scholarly journals A preliminary study - fiber reinforced cement mixes with partial replacement of waste fly ash

◽  
2019 ◽  
Author(s):  
Samer Abou Kheir ◽  
◽  
Jad Wakim ◽  
Elie Awwad ◽  
◽  
...  
2021 ◽  
Vol 11 (15) ◽  
pp. 6740
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt

Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer concrete (GPC) may be limited; however, quarry rock dust (QRD) wastes (limestone, dolomite, or silica powders) formed by crushing rocks appear virtually endless. Although significant experimental research has been carried out on GPC, with a major focus on the mix design development, rheological, durability, and mechanical properties of the GPC mixes; still the information available on the structural behavior of GPC is rather limited. This has implications in extending GPC application from a laboratory-based technology to an at-site product. This study investigates the structural behavior of quarry-rock-dust-incorporated fiber-reinforced GPC columns under concentric and eccentric loading. In this study, a total of 20 columns with 200 mm square cross-section and 1000 mm height were tested. The FA and SG were used as source materials to produce GPC mixtures. The QRD was incorporated as a partial replacement (20%) of SG. The conventional concrete (CC) columns were prepared as the reference specimens. The effect of incorporating quarry rock dust as a replacement of SG, steel fibers, and loading conditions (concentric and eccentric loading) on the structural behavior of GPC columns were studied. The test results revealed that quarry rock dust is an adequate material that can be used as a source material in GPC to manufacture structural concrete members with satisfactory performance. The general performance of the GPC columns incorporating QRD (20%) is observed to be similar to that of GPC columns (without QRD) and CC columns. The addition of steel fibers considerably improves the loading capacity, ductility, and axial load–displacement behavior of the tested columns. The load capacities of fiber-reinforced GPC columns were about 5–7% greater in comparison to the CC columns. The spalling of concrete cover at failure was detected in all plain GPC columns, whereas the failure mode of all fiber-reinforced GPC columns is characterized with surface cracking leading to disintegration of concrete cover.


2014 ◽  
Vol 919-921 ◽  
pp. 1903-1907
Author(s):  
Jun Pan ◽  
Fei Li ◽  
Xue Wu Zhang

This thesis discusses the influence of fly ash content, fiber content and fiber types on the performance of fiber reinforced concrete, through the flexural and compressive tests on fiber reinforced cement mortar, and the splitting tensile and bending tests on the fiber reinforced concrete. The test result shows that the adding of fly ash can better play the enhancement of polypropylene fiber; the change of the fiber content affects the flexural strength of cement mortar and obviously improves the splitting tensile strength of the reinforced concrete; and the polypropylene fiber and steel fiber have different enhancement on cement mortar due to their qualitative differences.


Author(s):  
Sun-Woo Kim ◽  
Wan-Shin Park ◽  
Young-Il Jang ◽  
Yi-Hyun Nam ◽  
Sun-Woong Kim ◽  
...  

Conventional cement composite is generally produced with ordinary Portland cement (OPC) as a binder. However, during manufacturing the cement composite, large amount of carbon dioxide (CO2) are emitted. Therefore, fly ash is proposed to be replaced to OPC in order to reduce CO2 emission of cement composites. For reinforcing fibers, micro steel fibers were used. For investigating mechanical properties of steel fiber-reinforced cement composites (SFRCCs), direct tension tests were conducted. The test results showed that fly ash improves tensile strength and ductility of SFRCCs. However, tensile strength of the SFRCC decreased as replacement ratio of recycled fine aggregate increased. The use of recycled materials in FRCC helps to save natural resources and promote sustainability in civil engineering materials.


2011 ◽  
Vol 12 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Zuraida Ahmad ◽  
Sopyan Iis ◽  
Zahurin Halim ◽  
Norshahida Sarifuddin

This paper evaluated the effect of fiber length on the mechanical and physical performance of coir fiber reinforced cement-albumen composites (CFRCC). Albumen protein was added as a binder and the coir fibers with the lengths of 0, 2.5, 5, 10 and 20 mm was used as partial replacement of the cement mixture. Flexural and compressive strength, bulk density, moisture content and water absorption were investigated. The experimental investigations reveal that increasing in length of fiber augment the flexural strength. Incorporation of long fiber into the cement paste however, decreased the workability and thus introduced voids which results in low density. In fact, the water absorption and moisture content were also increased.


2019 ◽  
Vol 281 ◽  
pp. 01010
Author(s):  
Samer Abou Kheir ◽  
Jad Wakim ◽  
Elie Awwad

The polypropylene (PP) fibers in shotcrete has been used for ground support and building strengthening, since several decades. However, the recent trend is to use the waste material in cementbased mixes to produce an eco-friendly material. Such waste material is the incineration fly ash (FA) that is classified as a hazardous product. This study is intended to establish the mechanical properties of fiber reinforced mortar in addition to cement or sand partial replacement by fly ash, in terms of flexural strength testing. The mechanical properties reflect the influence of the dosage of fiber content and the proportion of the fly ash on the flexural strength. The percentage of cement or sand was replaced by 0, 10, 20, and 30% fly ash. The dosage of fibers was 0, 0.6, 1.2, and 1.8 kg/m3. This green mix with fibers provides a partial substitute of cement as it is cheaper, by incorporating waste product, and saving energy consumption in the production. Due to growing interest in sustainable construction, engineers and architects are motivated to choose such materials which are more sustainable.


Sign in / Sign up

Export Citation Format

Share Document