scholarly journals Flexural resistance of the polypropylene fibres reinforced cement mixes with waste material

2019 ◽  
Vol 281 ◽  
pp. 01010
Author(s):  
Samer Abou Kheir ◽  
Jad Wakim ◽  
Elie Awwad

The polypropylene (PP) fibers in shotcrete has been used for ground support and building strengthening, since several decades. However, the recent trend is to use the waste material in cementbased mixes to produce an eco-friendly material. Such waste material is the incineration fly ash (FA) that is classified as a hazardous product. This study is intended to establish the mechanical properties of fiber reinforced mortar in addition to cement or sand partial replacement by fly ash, in terms of flexural strength testing. The mechanical properties reflect the influence of the dosage of fiber content and the proportion of the fly ash on the flexural strength. The percentage of cement or sand was replaced by 0, 10, 20, and 30% fly ash. The dosage of fibers was 0, 0.6, 1.2, and 1.8 kg/m3. This green mix with fibers provides a partial substitute of cement as it is cheaper, by incorporating waste product, and saving energy consumption in the production. Due to growing interest in sustainable construction, engineers and architects are motivated to choose such materials which are more sustainable.

2021 ◽  
Vol 889 (1) ◽  
pp. 012011
Author(s):  
Ajay Rana ◽  
Abhishek Sharma ◽  
Kshitij Jassal

Abstract In concrete industry, a huge amount of natural aggregates is used in the making of concrete every day. The environment is being exploited by mining for the gain of natural aggregates, resulting in an environmental instability in nature. As a result, an alternate source to substitute natural aggregates in concrete is required. A lot of waste materials have gain attention now a days into the concrete industry as a substitute to natural materials. Fly ash, a waste product of thermal power plants, meets the criterion for being utilised as an aggregate substitute in concrete because of its pozzolanic activity. Coarse fly ash is manufactured using a good manufacturing method and is light in weight. Keeping this into view, the impact of partial replacement of natural coarse aggregates with coarse fly ash aggregates produced using the colds bonded method is explored in this paper. The major focus of this study is on testing for flexural strength of self-cured concrete, as flexural strength is a key criterion for rigid pavement design. In this study, coarse fly ash aggregates are utilised in concrete in different proportions to substitute natural aggregates, and the optimal value for flexural strength is determined using a curing additive. The findings of this experiment indicated that when fly ash aggregates and curing additives were used optimally, the flexure strength improved, which is enough for the construction of rigid pavement as criteria fixed by Indian Standards.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012082
Author(s):  
Jianwei Zhou ◽  
Baoying Yu ◽  
Yaning Kong ◽  
Wen Yang ◽  
Baojun Cheng

Abstract The effect of limestone powder replacing fly ash on the mechanical properties of engineering cementitious composites was investigated. The results showed that the water demand of engineering cementitious composites due to partial replacement of fly ash by limestone powder, but the water demand of the system decreased when the replacement ratio reached 100%. The flexural strength of the specimen appears to decrease with increasing age due to incomplete replacement of lime powder. The toughness of the specimen can be significantly improved due to the complete replacement of fly ash by limestone powder.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2018 ◽  
Vol 761 ◽  
pp. 73-78 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Alkali-activated materials based on fly ash are widely developed and also produced on the present. Some of fly ashes are not suitable for production of alkali-activated materials because of their inconvenient chemical composition. Alumina-silicates are the most important components that are needed to accomplish the successful reaction. The proper content of amorphous phase of alumina-silicates and its proportion as well should be provided for the final composition of alkali-activated materials. The influence of pure aluminum oxide powder as well as raw milled natural perlite on mechanical properties and durability of alkali-activated mortars was investigated. These minerals were used as partial replacement of fly ash coming from black coal combustion. In addition, the mortars were prepared by using different alkali activators.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2003 ◽  
Vol 9 (4) ◽  
pp. 271-279 ◽  
Author(s):  
Hau-yan Leung ◽  
Ramapillai V. Balendran

This paper summarises experimental results of some fresh concrete tests. Polypropylene fibres were added to the concrete mix to produce fibre reinforced concrete. Pozzolanic materials, including pulverised fly ash and silica fume, were used as partial replacement of cement, and their effects on the fresh fibre concrete were reported. Test results showed that the polypropylene fibre reduced the concrete workability significantly by thixotropic effect and decreased the setting time. Substitution of pozzolans also greatly affected the properties. The presence of fly ash increased the workability and setting time but in the presence of silica fume a reverse trend was observed. Empirical equations were proposed.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


Author(s):  
Rayane de Lima Moura Paiva ◽  
Adriana Paiva Souza Martins ◽  
Lucas Rosse Caldas ◽  
Oscar A.M. Reales ◽  
Romildo Dias Toledo Filho

The incorporation of sustainable materials in the civil construction sector has grown in recent years to minimize environmental impacts. Among these materials, the use of earth, a local raw material that does not require much energy for its processing, appears as an advantageous and promising alternative. Earth mortars stabilized with natural binders, when compared to conventional mortars, can have technological, economic and environmental advantages. The objective of this work was to develop an earth-based mortar stabilized with mineral binders using a 1:3 binder to aggregate mass proportion, and to evaluate its fresh and hardened state properties, as well as its environmental impacts using Life Cycle Assessment (LCA) with a cradle to gate scope. The selected materials were divided in four groups: (i) cement, hydrated lime, fly ash and metakaolinite (binders), (ii) natural sand and coarse fraction of the earth (aggregates), (iii) calcium chloride and superplasticizer (additives) and (iv) water. In the matrix formulation the clay fraction from earth constituted the majority of the binder. The selection of supplementary cementitious materials as additional binders provided improvements in workability and mechanical properties of the mortar. A mix design was carried out using different cement (5; 7.5 and 10%) and fly ash (11; 13.5 and 16%) mass percentages. The water/binder material ratio, superplasticizer content and calcium chloride content were 0.65; 2% and 1%, respectively. The results showed that an increase in fly ash content combined with a decrease in cement content provided an increase in workability and a decrease in mechanical properties of mortars. Nevertheless, the mechanical performance of the mortars remained above the minimum values prescribed in Brazilian construction codes. From the results analysis it was concluded that partial replacement of cement by fly ash provided greater workability in the fresh state and reduced the environmental impacts of the earth-based mortar.


Sign in / Sign up

Export Citation Format

Share Document