PROMISING INTERMETALLIC Al2Ti ALLOYS FOR THE MANUFACTURE OF PARTS BY CASTING METHODS (review)

2021 ◽  
pp. 23-38
Author(s):  
A.V. Trapeznikov ◽  
◽  
V.I. Ivanov ◽  
E.A. Prokhorchuk ◽  
Yu.V. Reshetnikov ◽  
...  

The Al2Ti intermetallic compound is a promising material for the development of heat-resistant alloys used for the manufacture of shaped parts for ground and aircraft power plants. Considers the features of the structure of two-phase alloys, evaluates the casting properties and technological characteristics in comparison with various AlTi alloys, as applied to the production of ingots and cast products. It is necessary to use technologies developed for titanium alloys in the production of cast products from such alloys.

2021 ◽  
pp. 32-47
Author(s):  
N.A. Nochovnaya ◽  
◽  
V.I. Ivanov ◽  
L.Yu. Avilochev ◽  
◽  
...  

Intermetallide alloys based on the Al2Ti compound are the most promising heat-resistant materials for future energy plants.The review examines the mechanical properties of the Al2Ti Intermetalide, two-phase alloys based on it and the doped niobium alloy. For use at temperatures of up to 950 °С, alloys with phase composition r-Al2Ti + γ-TiAl and platemicrostructure with additional doping of refractory elements are of interest.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 80 ◽  
Author(s):  
Mykola Chausov ◽  
Janette Brezinová ◽  
Andrii Pylypenko ◽  
Pavlo Maruschak ◽  
Liudmyla Titova ◽  
...  

A simple technological method is proposed and tested experimentally, which allows for the improvement of mechanical properties in sheet two-phase high-strength titanium alloys VT23 and VT23M on the finished product (rolled metal), due to impact-oscillatory loading. Under impact-oscillatory loading and dynamic non-equilibrium processes (DNP) are realized in titanium alloys, leading to the self-organization of the structure. As a result, the mechanical properties of titanium alloys vary significantly with subsequent loading after the realization of DNP. In this study, the test modes are found, which can be used in the production conditions.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3847
Author(s):  
Karolina Weremijewicz ◽  
Andrzej Gajewski

Twenty percent of global electricity supplied to the buildings is used for preventing air temperature increase; its consumption for this prevention will triple by 2050 up to China’s present needs. Heat removed from the thermal power plants may drive cold generation in the absorption devices where mass and heat transfer are two-phase phenomena; hence liquid film break-up into the rivulets is extensively investigated, which needs knowledge of the velocity profiles. Laminar flow in a pipe is used in the preliminary study, velocity profile of developed flow is used as a benchmark. The study account writes the applied apparatus with their calibration procedure, and the uncertainty estimation algorithm. The calibration regression line with the slope close to one and a high Pearson’s coefficient value is the final outcome. Therefore, the apparatus may be applied in the principal research.


2021 ◽  
Vol 58 (5) ◽  
pp. 0514007-514007220
Author(s):  
刘福广 Liu Fuguang ◽  
李勇 Li Yong ◽  
杨二娟 Yang Erjuan ◽  
米紫昊 Mi Zihao ◽  
王博 Wang Bo ◽  
...  

2018 ◽  
Vol 104 ◽  
pp. 173-195 ◽  
Author(s):  
X.G. Fan ◽  
X.Q. Jiang ◽  
X. Zeng ◽  
Y.G. Shi ◽  
P.F. Gao ◽  
...  

Author(s):  
I K Smith

The world market for systems for power recovery from low-grade heat sources is of the order of £1 billion per annum. Many of these sources are hot liquids or gases from which conventional power systems convert less than 2.5 per cent of the available heat into useful power when the fluid is initially at a temperature of 100° C rising to 8–9 per cent at an initial temperature of 200°C. Consideration of the maximum work recoverable from such single-phase heat sources leads to the concept of an ideal trilateral cycle as the optimum means of power recovery. The trilateral flash cycle (TFC) system is one means of approaching this ideal which involves liquid heating only and two-phase expansion of vapour. Previous work related to this is reviewed and details of analytical studies are given which compare such a system with various types of simple Rankine cycle. It is shown that provided two-phase expanders can be made to attain adiabatic efficiencies of more than 75 per cent, the TFC system can produce outputs of up to 80 per cent more than simple Rankine cycle systems in the recovery of power from hot liquid streams in the 100–200°C temperature range. The estimated cost per unit net output is approximately equal to that of Rankine cycle systems. The preferred working fluids for TFC power plants are light hydrocarbons.


Author(s):  
Enrico Deri ◽  
Joël Nibas ◽  
Olivier Ries ◽  
André Adobes

Flow-induced vibrations of Steam Generator tube bundles are a major concern for the operators of nuclear power plants. In order to predict damages due to such vibrations, EDF has developed the numerical tool GeViBus, which allows one to asses risk and thereafter to optimize the SG maintenance policy. The software is based on a semi analytical model of fluid-dynamic forces and dimensionless fluid force coefficients which need to be assessed by experiment. The database of dimensionless coefficients is updated in order to cover all existing tube bundle configurations. Within this framework, a new test rig was presented in a previous conference with the aim of assessing parallel triangular tube arrangement submitted to a two-phase cross-flow. This paper presents the result of the first phase of the associated experiments in terms of force coefficients and two-phase flow excitation spectra for both in-plane and out-of-plane vibration.


Author(s):  
Salim El Bouzidi ◽  
Marwan Hassan ◽  
Jovica Riznic

Nuclear steam generators are critical components of nuclear power plants. Flow-Induced Vibrations (FIV) are a major threat to the operation of nuclear steam generators. The two main manifestations of FIV in heat exchangers are turbulence and fluidelastic instability, which would add mechanical energy to the system resulting in great levels of vibrations. The consequences on the operation of steam generators are premature wear of the tubes, as well as development of cracks that may leak radioactive heavy water. This paper investigates the effect of tube support clearance on crack propagation. A crack growth model is used to simulate the growth of Surface Flaws and Through-Wall Cracks of various initial sizes due to a wide range of support clearances. Leakage rates are predicted using a two-phase flow leakage model. Non-linear finite element analysis is used to simulate a full U-bend subjected to fluidelastic and turbulence forces. Monte Carlo Simulations are then used to conduct a probabilistic assessment of steam generator life due to crack development.


Sign in / Sign up

Export Citation Format

Share Document