scholarly journals The Stem Cell Hypothesis of Aging

2010 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Anna Meiliana ◽  
Andi Wijaya

BACKGROUND: There is probably no single way to age. Indeed, so far there is no single accepted explanation or mechanisms of aging (although more than 300 theories have been proposed). There is an overall decline in tissue regenerative potential with age, and the question arises as to whether this is due to the intrinsic aging of stem cells or rather to the impairment of stem cell function in the aged tissue environment.CONTENT: Recent data suggest that we age, in part, because our self-renewing stem cells grow old as a result of heritable intrinsic events, such as DNA damage, as well as extrinsic forces, such as changes in their supporting niches. Mechanisms that suppress the development of cancer, such as senescence and apoptosis, which rely on telomere shortening and the activities of p53 and p16INK4a may also induce an unwanted consequence: a decline in the replicative function of certain stem cells types with advancing age. This decrease regenerative capacity appears to pointing to the stem cell hypothesis of aging.SUMMARY: Recent evidence suggested that we grow old partly because of our stem cells grow old as a result of mechanisms that suppress the development of cancer over a lifetime. We believe that a further, more precise mechanistic understanding of this process will be required before this knowledge can be translated into human anti-aging therapies.KEYWORDS: stem cells, senescence, telomere, DNA damage, epigenetic, aging

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 116-117
Author(s):  
Archana Unnikrishnan

Abstract Stem cells play a critical role in the maintenance of tissue function and their proliferative/regenerative capacity is essential to this role. Because stem cells persist over the lifespan of an animal, they are susceptible to gradual accumulation of age-associated damage, resulting in the loss of regenerative function that can impair organ function. Understanding the mechanism(s) that regulates stem cell function is essential for retarding the aging process, and stem cells are attractive targets for aging interventions. Dietary restriction (DR), the most robust anti-aging intervention to-date, has been shown to enhance the activity and integrity of stem cells in a variety of tissues (e.g., muscle, bone marrow, and intestine), and it is believed that effect of DR on stem cells plays an important role in the anti-aging action of DR. For example, DR has been shown to preserve and increase the number of intestinal stem cells (ISCs) and enhance their regenerative capacity in young animals. Data from my lab shows that ISCs from old mice have limited proliferation activity and form few if any organoids in vitro (a surrogate for a fully functional crypt) and that ISCs isolated from old mice on life-long DR show an improved ability to form organoids. While it is well accepted that life-long DR increases lifespan and has anti-aging effects an important aspect of DR that has been largely overlooked is that DR implemented only for a short time early in life can increase lifespan of rodents even when rodents are fed ad libitum the remainder of their life. In line with this, we recently found that ISCs from old mice fed DR for only a short-period resulted in a dramatic increase in ability of the ISCs to form organoids. This is the first evidence that short-term DR administrated late in life can rescue the loss in ISC function that occurs with age.


2015 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Recent evidence suggested that we grow old partly because of our stem cells grow old as a result of mechanisms that suppress the development of cancer over a lifetime. We believe that a further, more precise mechanistic understanding of this process will be required before this knowledge can be translated into human anti-aging therapies.CONTENT: A diminished capacity to maintain tissue homeostasis is a central physiological characteristic of aging. As stem cells regulate tissue homeostasis, depletion of stem cell reserves and/or diminished stem cell function have been postulated to contribute to aging. It has further been suggested that accumulated DNA damage could be a principal mechanism underlying age-dependent stem cell decline. It is interesting that many of the rejuvenating interventions act on the stem cell compartments, perhaps reflecting shared genetic and biochemical pathways controlling stem cell function and longevity. Strategy to slow down the aging processes is based on caloric restriction refers to a dietary regimen low in calories but without undernutrition. Sirtuin (SIRT)1 and 3, increases longevity by mimicking the beneficial effects of caloric restriction. SIRT3 regulates stress-responsive mitochondrial homeostasis, and more importantly, SIRT3 upregulation rejuvenates aged stem cells in tissues. Resveratrol (3,5,4’-trihydroxystilbene), a natural polyphenol found in grapes and wine, was the most powerful natural activator of SIRT1. In fact, resveratrol treatment has been demonstrated to rescue adult stem cell decline, slow down bodyweight loss, improve trabecular bone structure and mineral density, and significantly extend lifespan.SUMMARY: Tissue-specific stem cells persist throughout the entire lifespan to repair and maintain tissues, but their self-renewal and differentiation potential become dysregulated with aging. Given that adult stem cells are thought to be central to tissue maintenance and organismal survival, SIRT3 may promote organismal longevity by maintaining the integrity of tissue-speciic stem cells.KEYWORDS: rejuvenation, aging, stem cell, DNA damage, sirtuin activator


2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7813
Author(s):  
Lindsay Kraus ◽  
Chris Bryan ◽  
Marcus Wagner ◽  
Tabito Kino ◽  
Melissa Gunchenko ◽  
...  

Ischemic heart disease can lead to myocardial infarction (MI), a major cause of morbidity and mortality worldwide. Multiple stem cell types have been safely transferred into failing human hearts, but the overall clinical cardiovascular benefits have been modest. Therefore, there is a dire need to understand the basic biology of stem cells to enhance therapeutic effects. Bmi1 is part of the polycomb repressive complex 1 (PRC1) that is involved in different processes including proliferation, survival and differentiation of stem cells. We isolated cortical bones stem cells (CBSCs) from bone stroma, and they express significantly high levels of Bmi1 compared to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs). Using lentiviral transduction, Bmi1 was knocked down in the CBSCs to determine the effect of loss of Bmi1 on proliferation and survival potential with or without Bmi1 in CBSCs. Our data show that with the loss of Bmi1, there is a decrease in CBSC ability to proliferate and survive during stress. This loss of functionality is attributed to changes in histone modification, specifically histone 3 lysine 27 (H3K27). Without the proper epigenetic regulation, due to the loss of the polycomb protein in CBSCs, there is a significant decrease in cell cycle proteins, including Cyclin B, E2F, and WEE as well as an increase in DNA damage genes, including ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR). In conclusion, in the absence of Bmi1, CBSCs lose their proliferative potential, have increased DNA damage and apoptosis, and more cell cycle arrest due to changes in epigenetic modifications. Consequently, Bmi1 plays a critical role in stem cell proliferation and survival through cell cycle regulation, specifically in the CBSCs. This regulation is associated with the histone modification and regulation of Bmi1, therefore indicating a novel mechanism of Bmi1 and the epigenetic regulation of stem cells.


2021 ◽  
Vol 22 (2) ◽  
pp. 666
Author(s):  
Toshio Takahashi

Stem cells have extensive proliferative potential and the ability to differentiate into one or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide fundamental insight into the origin and design of multicellular organisms. These pathways allow the repair of damage and extend organismal life beyond that of component cells, and they probably preceded the evolution of complex metazoans. Understanding the true nature of stem cells can only come from discovering how they are regulated. The concept that stem cells are controlled by particular microenvironments, also known as niches, has been widely accepted. Technical advances now allow characterization of the zones that maintain and control stem cell activity in several organs, including the brain, skin, and gut. Cholinergic neurons release acetylcholine (ACh) that mediates chemical transmission via ACh receptors such as nicotinic and muscarinic receptors. Although the cholinergic system is composed of organized nerve cells, the system is also involved in mammalian non-neuronal cells, including stem cells, embryonic stem cells, epithelial cells, and endothelial cells. Thus, cholinergic signaling plays a pivotal role in controlling their behaviors. Studies regarding this signal are beginning to unify our understanding of stem cell regulation at the cellular and molecular levels, and they are expected to advance efforts to control stem cells therapeutically. The present article reviews recent findings about cholinergic signaling that is essential to control stem cell function in a cholinergic niche.


2021 ◽  
pp. 1-14
Author(s):  
Romina L. Filippelli ◽  
Natasha C. Chang

Duchenne muscular dystrophy (DMD) is a devastating and debilitating muscle degenerative disease affecting 1 in every 3,500 male births worldwide. DMD is progressive and fatal; accumulated weakening of the muscle tissue leads to an inability to walk and eventual loss of life due to respiratory and cardiac failure. Importantly, there remains no effective cure for DMD. DMD is caused by defective expression of the <i>DMD</i> gene, which encodes for dystrophin, a component of the dystrophin glycoprotein complex. In muscle fibers, this protein complex plays a critical role in maintaining muscle membrane integrity. Emerging studies have shown that muscle stem cells, which are adult stem cells responsible for muscle repair, are also affected in DMD. DMD muscle stem cells do not function as healthy muscle stem cells, and their impairment contributes to disease progression. Deficiencies in muscle stem cell function include impaired establishment of cell polarity leading to defective asymmetric stem cell division, reduced myogenic commitment, impaired differentiation, altered metabolism, and enhanced entry into senescence. Altogether, these findings indicate that DMD muscle stem cells are dysfunctional and have impaired regenerative potential. Although recent advances in adeno-associated vector and antisense oligonucleotide-mediated mechanisms for gene therapy have shown clinical promise, the current therapeutic strategies for muscular dystrophy do not effectively target muscle stem cells and do not address the deficiencies in muscle stem cell function. Here, we discuss the merits of restoring endogenous muscle stem cell function in degenerating muscle as a viable regenerative medicine strategy to mitigate DMD.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1182
Author(s):  
Prince Verma ◽  
Court K. M. Waterbury ◽  
Elizabeth M. Duncan

Tumor suppressor genes (TSGs) are essential for normal cellular function in multicellular organisms, but many TSGs and tumor-suppressing mechanisms remain unknown. Planarian flatworms exhibit particularly robust tumor suppression, yet the specific mechanisms underlying this trait remain unclear. Here, we analyze histone H3 lysine 4 trimethylation (H3K4me3) signal across the planarian genome to determine if the broad H3K4me3 chromatin signature that marks essential cell identity genes and TSGs in mammalian cells is conserved in this valuable model of in vivo stem cell function. We find that this signature is indeed conserved on the planarian genome and that the lysine methyltransferase Set1 is largely responsible for creating it at both cell identity and putative TSG loci. In addition, we show that depletion of set1 in planarians induces stem cell phenotypes that suggest loss of TSG function, including hyperproliferation and an abnormal DNA damage response (DDR). Importantly, this work establishes that Set1 targets specific gene loci in planarian stem cells and marks them with a conserved chromatin signature. Moreover, our data strongly suggest that Set1 activity at these genes has important functional consequences both during normal homeostasis and in response to genotoxic stress.


2016 ◽  
Author(s):  
Adam L MacLean ◽  
Maia A Smith ◽  
Juliane Liepe ◽  
Aaron Sim ◽  
Reema Khorshed ◽  
...  

AbstractThe haematopoietic stem cell (HSC) niche provides essential micro-environmental cues for the production and maintenance of HSCs within the bone marrow. During inflammation, haematopoietic dynamics are perturbed, but it is not known whether changes to the HSC-niche interaction occur as a result. We visualise HSCs directly in vivo, enabling detailed analysis of the 3D niche dynamics and migration patterns in murine bone marrow following Trichinella spiralis infection. Spatial statistical analysis of these HSC trajectories reveals two distinct modes of HSC behaviour: (i) a pattern of revisiting previously explored space, and (ii) a pattern of exploring new space. Whereas HSCs from control donors predominantly follow pattern (i), those from infected mice adopt both strategies. Using detailed computational analyses of cell migration tracks and life-history theory, we show that the increased motility of HSCs following infection can, perhaps counterintuitively, enable mice to cope better in deteriorating HSC-niche micro-environments following infection.Author SummaryHaematopoietic stem cells reside in the bone marrow where they are crucially maintained by an incompletely-determined set of niche factors. Recently it has been shown that chronic infection profoundly affects haematopoiesis by exhausting stem cell function, but these changes have not yet been resolved at the single cell level. Here we show that the stem cell–niche interactions triggered by infection are heterogeneous whereby cells exhibit different behavioural patterns: for some, movement is highly restricted, while others explore much larger regions of space over time. Overall, cells from infected mice display higher levels of persistence. This can be thought of as a search strategy: during infection the signals passed between stem cells and the niche may be blocked or inhibited. Resultantly, stem cells must choose to either ‘cling on’, or to leave in search of a better environment. The heterogeneity that these cells display has immediate consequences for translational therapies involving bone marrow transplant, and the effects that infection might have on these procedures.


2017 ◽  
Vol 9 (3) ◽  
pp. 129
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Aging per se is a risk factor for reduced cardiac function and heart diseases, even when adjusted for aging-associated cardiovascular risk factors. Accordingly, aging-related biochemical and cell-biological changes lead to pathophysiological conditions, especially reduced heart function and heart disease.CONTENT: Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1a and PGC-1b in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging.SUMMARY: The aging myocardium with telomere shortening and accumulation of senescent cells restricts the tissue regenerative ability, which contributes to systolic or diastolic heart failure. Moreover, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments.KEYWORDS: aging, telomere, telomerase, aging heart, mitochondria, cardiac stem cell


Sign in / Sign up

Export Citation Format

Share Document