scholarly journals Set1 Targets Genes with Essential Identity and Tumor-Suppressing Functions in Planarian Stem Cells

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1182
Author(s):  
Prince Verma ◽  
Court K. M. Waterbury ◽  
Elizabeth M. Duncan

Tumor suppressor genes (TSGs) are essential for normal cellular function in multicellular organisms, but many TSGs and tumor-suppressing mechanisms remain unknown. Planarian flatworms exhibit particularly robust tumor suppression, yet the specific mechanisms underlying this trait remain unclear. Here, we analyze histone H3 lysine 4 trimethylation (H3K4me3) signal across the planarian genome to determine if the broad H3K4me3 chromatin signature that marks essential cell identity genes and TSGs in mammalian cells is conserved in this valuable model of in vivo stem cell function. We find that this signature is indeed conserved on the planarian genome and that the lysine methyltransferase Set1 is largely responsible for creating it at both cell identity and putative TSG loci. In addition, we show that depletion of set1 in planarians induces stem cell phenotypes that suggest loss of TSG function, including hyperproliferation and an abnormal DNA damage response (DDR). Importantly, this work establishes that Set1 targets specific gene loci in planarian stem cells and marks them with a conserved chromatin signature. Moreover, our data strongly suggest that Set1 activity at these genes has important functional consequences both during normal homeostasis and in response to genotoxic stress.

2018 ◽  
Vol 115 (19) ◽  
pp. E4463-E4472 ◽  
Author(s):  
Geoffrey Lee ◽  
Ana Isabel Espirito Santo ◽  
Stefan Zwingenberger ◽  
Lawrence Cai ◽  
Thomas Vogl ◽  
...  

A major discovery of recent decades has been the existence of stem cells and their potential to repair many, if not most, tissues. With the aging population, many attempts have been made to use exogenous stem cells to promote tissue repair, so far with limited success. An alternative approach, which may be more effective and far less costly, is to promote tissue regeneration by targeting endogenous stem cells. However, ways of enhancing endogenous stem cell function remain poorly defined. Injury leads to the release of danger signals which are known to modulate the immune response, but their role in stem cell-mediated repair in vivo remains to be clarified. Here we show that high mobility group box 1 (HMGB1) is released following fracture in both humans and mice, forms a heterocomplex with CXCL12, and acts via CXCR4 to accelerate skeletal, hematopoietic, and muscle regeneration in vivo. Pretreatment with HMGB1 2 wk before injury also accelerated tissue regeneration, indicating an acquired proregenerative signature. HMGB1 led to sustained increase in cell cycling in vivo, and using Hmgb1−/− mice we identified the underlying mechanism as the transition of multiple quiescent stem cells from G0 to GAlert. HMGB1 also transitions human stem and progenitor cells to GAlert. Therefore, exogenous HMGB1 may benefit patients in many clinical scenarios, including trauma, chemotherapy, and elective surgery.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 267-267 ◽  
Author(s):  
Ivan Maillard ◽  
Seth E. Pross ◽  
Olga Shestova ◽  
Hong Sai ◽  
Jon C. Aster ◽  
...  

Abstract Canonical Notch signaling operates through a highly conserved pathway that regulates the differentiation and homeostasis of hematopoietic cells. Ligand-receptor binding initiates proteolytic release of the Notch intracellular domain (ICN) which migrates to the nucleus, binds the transcription factor CSL/RBPJk and activates target genes through the recruitment of transcriptional coactivators of the Mastermind-like family (MAML). Notch signaling is essential for the emergence of hematopoietic stem cells (HSCs) during fetal life, but its effects on adult HSCs are controversial. In gain-of-function experiments, activation of Notch signaling in adult HSCs increased their self-renewal potential in vitro and in vivo. However, loss-of-function studies have provided conflicting results as to the role of physiological Notch signaling in HSC maintenance and homeostasis. To address this question, we expressed DNMAML1, a GFP-tagged pan-inhibitor of Notch signaling, in mouse HSCs. We have shown previously that DNMAML1 interferes with the formation of the ICN/CSL/MAML transcriptional activation complex and blocks signaling from all four Notch receptors (Notch1-4) (Maillard, Blood 2004). Transfer of DNMAML1-transduced bone marrow (BM) as compared to control GFP-transduced BM into lethally irradiated recipients gave rise to similar long-term stable expression of GFP for at least 6 months after transplant. DNMAML1 and GFP-transduced cells contributed equally to all hematopoietic lineages, except to the T cell and marginal zone B cell lineages, which are Notch-dependent. Expression of DNMAML1 did not affect the size of the BM progenitor compartment (Lin negative, Sca-1 positive, c-Kit high, or LSK cells), or the proportion of LSK cells that were negative for Flt3 and L-Selectin expression (containing long-term HSCs). The stem cell function of DNMAML1-transduced LSK cells was further assessed with in vivo competitive repopulation assays in lethally irradiated recipients. DNMAML1 and GFP-transduced LSK cells competed equally well with wild-type BM, as judged by their contribution to the myeloid lineage up to 4 months post-transplant, through two successive rounds of transplantation. Our data indicate that canonical Notch signaling is dispensable for the maintenance of stem cell function in adult HSCs.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Nikolce Gjorevski ◽  
Paloma Ordóñez-Morán

Intestinal stem cells are located at the base of the crypts and are surrounded by a complex structure called niche. This environment is composed mainly of epithelial cells and stroma which provides signals that govern cell maintenance, proliferation, and differentiation. Understanding how the niche regulates stem cell fate by controlling developmental signaling pathways will help us to define how stem cells choose between self-renewal and differentiation and how they maintain their undifferentiated state. Tractable in vitro assay systems, which reflect the complexity of the in vivo situation but provide higher level of control, would likely be crucial in identifying new players and mechanisms controlling stem cell function. Knowledge of the intestinal stem cell niche gathered from both in vivo and novel in vitro models may help us improve therapies for tumorigenesis and intestinal damage and make autologous intestinal transplants a feasible clinical practice.


2020 ◽  
Author(s):  
Jette Lengefeld ◽  
Chia-Wei Cheng ◽  
Pema Maretich ◽  
Marguerite Blair ◽  
Hannah Hagen ◽  
...  

AbstractStem cells are remarkably small in size. Whether small size is important for stem cell function is unknown. We find that murine hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferative potential. Preventing HSC enlargement by inhibiting macromolecule biosynthesis or reducing large HSCs size by shortening G1 averts the loss of stem cell potential under conditions causing stem cell exhaustion. Finally, we show that a fraction of murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.One Sentence SummarySize increase drives stem cell aging.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-42-SCI-42
Author(s):  
Robert Signer

Hematopoietic stem cells (HSCs) regenerate blood cells lost to turnover, injury and disease. Defects in HSC maintenance, such as those that occur during aging, lead to anemia, impaired immunity, and bone marrow failure. Over- or ectopic activation of HSC self-renewal programs leads to hematopoietic neoplasms. Thus, defects in HSC maintenance can lead to diverse malignant and non-malignant hematopoietic disorders. We recently discovered that HSCs have lower rates of protein synthesis than other blood cells. Low protein synthesis is necessary for HSCs, as genetic changes that increase protein synthesis impair HSC function. Importantly, this does not simply reflect HSC quiescence, as dividing HSCs also have lower rates of protein synthesis as compared to dividing restricted progenitors. However, why stem cells depend on low protein synthesis and how increases in protein synthesis impair stem cell function remain largely unknown. Translation is a key cog in both the gene expression and protein homeostasis (proteostasis) networks, and thus influences both the content and the quality of the proteome. We have now determined that low protein synthesis within HSCs is associated with elevated proteome quality in vivo. HSCs contain less ubiquitylated and unfolded proteins as compared to restricted myeloid progenitors, and modest increases in protein synthesis cause an accumulation of misfolded/unfolded proteins within HSCs. Thus, HSCs depend upon low protein synthesis to maintain proteome quality. To test how translational control of proteome quality affects stem cell function, we examined Aarssti/sti mice that harbor a mutation in the alanyl-tRNA synthetase, which causes a tRNA editing defect that increases amino acid misincorporation errors during translation. Aarssti/sti mice exhibit reduced HSC numbers and significantly diminished serial reconstituting activity in vivo, but do not exhibit defects within restricted progenitors. Surprisingly, a modest accumulation of misfolded/unfolded proteins does not induce significant activation of the unfolded protein response within HSCs, but instead overwhelms the capacity of the proteasome, which promotes the stabilization and increased abundance of c-Myc. Conditional deletion of a single copy of Myc is sufficient to significantly rescue serial reconstitution defects in Aarssti/sti HSCs. HSCs are thus dependent on low protein synthesis to maintain proteome quality and homeostasis to preserve their self-renewal activity in vivo. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Alvina G. Lai ◽  
Nobuyoshi Kosaka ◽  
Prasad Abnave ◽  
Sounak Sahu ◽  
A. Aziz Aboobaker

AbstractHeterogeneity of planarian neoblast stem cells has been categorised on the basis of single cell expression analyses and subsequent experiments to demonstrate lineage relationships. Some data suggest that despite gene expression heterogeneity amongst cells in the cell cycle, in fact only one sub-population, known as sigma neoblasts, can self-renew. Without the tools to perform live in vivo lineage analysis, we instead took an alternative approach to provide independent evidence for defining the self-renewing stem cell population. We exploited the role of highly conserved condensin proteins to functionally assay neoblast self-renewal properties. Condensins are involved in forming properly condensed chromosomes to allow cell division to proceed during mitosis, and their abrogation inhibits mitosis and can lead to repeated endoreplication of the genome in cells that make repeated attempts to divide. We find that planarians possess only the condensin I complex, and that this is required for normal stem cell function. Abrogation of condensin function led to rapid stem cell depletion accompanied by the appearance of giant cells with increased DNA content. Using previously discovered markers of heterogeneity we show that enlarged cells are always from the sigma-class of the neoblast population and we never observe evidence for endoreplication for the other neoblast subclasses. Overall, our data establish that condensins are essential for stem cell maintenance and provide independent evidence that only sigma-neoblasts are capable of multiple rounds of cell division and hence self-renewal.


2021 ◽  
Author(s):  
Vahab Soleimani ◽  
Felicia Lazure ◽  
Rick Farouni ◽  
Korin Sahinyan ◽  
Darren Blackburn ◽  
...  

Abstract Adult stem cells are indispensable for tissue regeneration, but the number and regenerative capacity of stem cells declines with age. Whether the decrease in stem cell function is the cause or consequence of the aging of a tissue is unclear. Evidence suggests that the niche environment plays a critical role in the regulation of adult stem cell function6-10. However, quantification of the niche effect on stem cell function is an unmet challenge. Using muscle stem cells (MuSCs) as a model, we show that aging leads to a significant transcriptomic shift in MuSC subpopulations. By combining in vivo MuSC transplantation, multi-omics and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs can be restored by exposure to a young niche environment. Age-related genes whose expression is not restored exhibit altered chromatin accessibility and are associated with differentially methylated regions between young and aged cells. Our findings establish that the expression of the majority of age-related altered genes that are not epigenetically encoded is readily restorable by exposure to a young niche environment. The stem cell niche may therefore be an important therapeutic target to mitigate the negative consequences of aging on tissue regeneration.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2688-2688
Author(s):  
Celine Haond ◽  
Francoise Farace ◽  
Martine Guillier ◽  
Yann Lecluse ◽  
Ludmilla Mecaj ◽  
...  

Abstract Murine skeletal muscle harbors hematopoietic stem cells. It has been suggested that these cells of hematopoietic origin have an altered stem cell function possibly due to their inadeqaute environment as compared to marrow-resident stem cells. The comparative quantitative and qualitative analysis of marrow and muscle-resident stem cells at the single cell level has not been performed so far. To this end, we have performed in vitro and in vivo stem cell detection assays using highly purified CD45+ cells, side population (SP) cells and SP/CD45 +cells. Muscle and marrow were found to contain 1–3 % and 0.2– 0.5 % of SP cells, respectively. The frequency of SP/CD45+ phenotype was 0.1–0.4% for the marrow and 0.2–0.5% in the muscle. Hematopoietic clonogenic cell efficiency from total nucleated cells was 1/500 for marrow and 1/10000 for muscle. Clonogenic efficiency of muscle CD45+ cells was about 1/3rd of that of marrow but with preserved erythroid and granulocytic differentiation ability. The use of SP/CD45+ cells from both muscle and marrow allowed an enrichment of clonogenic capacity by 60-fold in marrow and 360-fold in the muscle. In limiting dilution assays performed in MS-5 cells over 5 weeks, LTC-IC frequency was found to be 1/100 for marrow SP/CD45+ cells and 1/550 for muscle SP/CD45+ cells. To determine cloning and differentiation abilities of single SP/CD45+ cells purified from muscle and marrow, we have cultured single FACS-sorted cells in the presence of SCF, l-Flt3, IL-7, IL-11 and / or the OP-9 stroma (which promotes hematopoietic cell differentiation from embryonic stem cells) for 14– 21 days. Single SP/CD45+ cell cloning efficiency was 14% for marrow (109 wells + / 768) and 3% for muscle (42 wells+ / 1248). Despite this difference, single muscle-derived SP/CD45+ cells exhibited very robust proliferative activity, with 8– 13 cell doubling being obtained in 8 days in the presence of either cytokines alone or OP9 cells + cytokines, leading to absolute numbers of up to 60000/well. More importantly, like marrow SP/CD45+ cells, individual muscle-derived cells exhibited multilineage differentiation ability, with evidence of myeloid, B, NK and dendritic cell differentiation at day 14–21. In in vivo reconstitution experiments, the mean % of Ly5.1 chimerism generated after transplantation of of highly purified marrow SP/CD45+ cells ( 30 – 5700 cells/mouse, n=25 mice) and muscle SP/CD45+ cells ( 300–6500 cells / mouse) was 60% and 9 %, respectively (+ 8 months). To determine if this difference could be due to homing characteristics, SP+/CD45+ cells of marrow (300 /mouse) and muscle origin (300–500/mouse) were transplanted in lethally irradiated Ly5.2 mice by intrafemoral injection. In these assays, muscle-derived SP+/CD45+ cells gave rise also to persistent but lower Ly5.1 chimerisms as compared to marrow (+ 3 months). Thus, our results demonstrate that murine skeletal muscle harbors true stem cells with extensive proliferative and multilineage differentiation ability but as compared to marrow this population occurs with lower frequency. This heterogeneity, explaining an apparently reduced stem cell function in vivo, is not due to homing inability. Experiments underway will determine the in vivo potential of single muscle-resident stem cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 722-722 ◽  
Author(s):  
Maria Kleppe ◽  
Matthew H Spitzer ◽  
Sheng Li ◽  
Lauren Dong ◽  
Efthymia Papalexi ◽  
...  

Abstract Cytokine-mediated signal transduction is critical to hematopoiesis, immune responses, and other physiological processes. Aberrant production and secretion of pro-inflammatory cytokines disturbs homeostasis and proper immune function and if persistent results in symptoms of chronic inflammation. Previous studies have illustrated the importance of JAK1 as an effector of cytokine signaling, including in immunological and neoplastic diseases such that selective JAK1 inhibition is currently being investigated in clinical trials. However, the role of Jak1 in hematopoietic stem cell (HSC) function has not been delineated. This has led us to investigate the impact of loss of Jak1 signaling on HSC function by developing a novel conditional Jak1 knockout allele (Fig. 1a). Mice with conditional deletion of Jak1 in the hematopoietic system (hereafter referred to as Jak1 KO) are characterized by leukocytosis (Jak1 KO avg. 6.34K/ul, Jak1 WT avg. 10.76K/ul, P<0.01), and reduced spleen (Jak1 KO avg. 73.76mg, Jak1 WT avg. 98.86mg, P<0.01) and thymus weights (Jak1 KO avg. 49.31mg, Jak1 WT avg. 80.82mg, P<0.01). High dimensional single cell analysis of the hematopoietic compartment of these mice using mass cytometry showed that conditional Jak1 loss in hematopoietic cells attenuates B cell and NK cell differentiation in vivo, and results in differentiation towards the myeloid lineage at the expense of lymphoid fate commitment. Further, we observed a significant reduction of lineage-Sca1+cKit+ (LSK) cells in the bone marrow of Jak1 KO mice, including a decrease in CD34-Flk2- long-term HSCs (LT-HSCs) and in CD34+Flk2- short-term HSCs (ST-HSCs) (Fig.1b). Jak1-deficient cells formed fewer colonies in colony formation unit assays, which was also seen when clonogenic assays were performed in the presence of JAK1 inhibitor GLPG0634. Most importantly, Jak1-deficient stem cells exhibited decreased competitiveness in bone marrow transplantation assays. Flow analysis at 4 weeks post transplantation showed a 3-fold reduced blood chimerism in recipients transplanted with Jak1 KO bone marrow cells and at 16 weeks, Jak1KO cells were largely outcompeted by CD45.1-positive WT cells (Fig. 1c). Jak1-deficient stem cells were also unable to rescue hematopoiesis in the setting of myelosuppressive insults leading to a worse survival of Jak1 KO mice when serially injected with 5-fluorouracil (5-FU) (Fig. 1d). Consistent with the stem cell phenotype observed in JAK1 KO mice, we found that a significant larger proportion of Jak1-deficient stem cells lacks expression of the proliferation marker Ki67 and that Jak1-deficient stem cells fail to enter the cell cycle in response to hematopoietic stress. To begin to determine the mechanism by which Jak1 regulates normal stem cell function in vivo, we assessed the impact of loss of Jak1 on transcriptional output. Gene expression profiling of LT-HSCs from Jak1 KO and WT mice identified 259 significant genes, many of which were known to be Jak1 downstream targets. Gene set enrichment analysis (GSEA) revealed that the majority of genes that were altered following deletion of Jak1 corresponded to interferon signaling and inflammatory response pathways. Consistent with these findings, our functional in vitro and in vivo assays demonstrated that Jak1-deficient cells were insensitive to type I interferons as shown by lack of Stat1 and Stat5 activation (Fig. 1e), retained Sca1 surface expression, and an unchanged cell cycle status upon IFN stimulation. Moreover, the HSC defect observed in the setting of Jak1 loss was not fully rescued by expression of a constitutively active Jak2 allele, suggesting there is non-redundant signaling in HSCs within the JAK kinase family. Together, our data suggests that Jak1 functions as a central node for interferon signaling in HSCs and reveals an essential and nonredundant role of Jak1 in HSC homeostasis and stress response. Figure 1 a) Design of a conditional targeting vector and confirmation of gene deletion on protein level. b) Reduction of LSK cells in Jak1 KO mice. c) Competitive disadvantage of Jak1-deficient cells. d) Increased mortality of Jak1 KO mice when serially challenged with 5-FU. e) Jak1-deficient LSK cells are insensitive to type I interferon stimulation. Figure 1. a) Design of a conditional targeting vector and confirmation of gene deletion on protein level. b) Reduction of LSK cells in Jak1 KO mice. c) Competitive disadvantage of Jak1-deficient cells. d) Increased mortality of Jak1 KO mice when serially challenged with 5-FU. e) Jak1-deficient LSK cells are insensitive to type I interferon stimulation. Disclosures Koppikar: Amgen: Employment. Nolan:Fluidigm: Consultancy. Levine:Novartis: Consultancy; Qiagen: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhenzhen Han ◽  
Qi Zhang ◽  
Yanbo Zhu ◽  
Jingcheng Chen ◽  
Wei Li

Stem cell research has focused on genomic studies. However, recent evidence has indicated the involvement of epigenetic regulation in determining the fate of stem cells. Ribosomes play a crucial role in epigenetic regulation, and thus, we focused on the role of ribosomes in stem cells. Majority of living organisms possess ribosomes that are involved in the translation of mRNA into proteins and promote cellular proliferation and differentiation. Ribosomes are stable molecular machines that play a role with changes in the levels of RNA during translation. Recent research suggests that specific ribosomes actively regulate gene expression in multiple cell types, such as stem cells. Stem cells have the potential for self-renewal and differentiation into multiple lineages and, thus, require high efficiency of translation. Ribosomes induce cellular transdifferentiation and reprogramming, and disrupted ribosome synthesis affects translation efficiency, thereby hindering stem cell function leading to cell death and differentiation. Stem cell function is regulated by ribosome-mediated control of stem cell-specific gene expression. In this review, we have presented a detailed discourse on the characteristics of ribosomes in stem cells. Understanding ribosome biology in stem cells will provide insights into the regulation of stem cell function and cellular reprogramming.


Sign in / Sign up

Export Citation Format

Share Document