scholarly journals Cold atmospheric plasma, a novel promising anti-cancer treatment modality

Oncotarget ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 15977-15995 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar
2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2021 ◽  
Vol 11 (16) ◽  
pp. 7757
Author(s):  
Dayun Yan ◽  
Alisa Malyavko ◽  
Qihui Wang ◽  
Li Lin ◽  
Jonathan H. Sherman ◽  
...  

Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Dayun Yan ◽  
Wenjun Xu ◽  
Xiaoliang Yao ◽  
Li Lin ◽  
Jonathan H. Sherman ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2330
Author(s):  
Charlotta Bengtson ◽  
Annemie Bogaerts

Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.


Author(s):  
R Silva-Teixeira ◽  
M Laranjo ◽  
C Almeida-Ferreira ◽  
G Brites ◽  
AM Abrantes ◽  
...  

2018 ◽  
Vol 8 (2) ◽  
pp. 203-215 ◽  
Author(s):  
Zhitong Chen ◽  
Li Lin ◽  
Qinmin Zheng ◽  
Jonathan H. Sherman ◽  
Jerome Canady ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Dayun Yan ◽  
Annie Talbot ◽  
Niki Nourmohammadi ◽  
Xiaoqian Cheng ◽  
Jerome Canady ◽  
...  

2014 ◽  
Vol 11 (12) ◽  
pp. 1128-1137 ◽  
Author(s):  
Edward A. Ratovitski ◽  
Xiaoqian Cheng ◽  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Jerome Canady ◽  
...  

2021 ◽  
Vol 7 (36) ◽  
Author(s):  
Guojun Chen ◽  
Zhitong Chen ◽  
Zejun Wang ◽  
Richard Obenchain ◽  
Di Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document