scholarly journals ALGORITHM FOR CONTROLLING THE SPECTRUM OF EIGENFREQUENCIES AND VIBRATION MODES BY CHARDING THE GEOMETRIC PARAMETERS OF MAST SESTEMS

Author(s):  
Vladimir Grinyov ◽  
Vitaliy Vynogradov

The article considers a model of a mast with six levels of fastening of cables. The main attention in the work is considered to the methods of control of the natural frequency spectrum, due to the use of methods of sensitivity analysis and optimization. The above task is achieved by varying the cross-sectional area of the pipes - racks. Automation of computational processes is provided by programming the built-in module in the Revit program. For more convenient and faster control of the natural frequency spectrum, the algorithm described above was written in a free add-on for Revit - Dynamo. With the help of so-called nodes, an application was created that took data from the depicted 3D model Revit and performed calculations. This allows you to easily use optimality conditions similar to the maximum principle. The sensitivity analysis for the first and second own is carried out in the work. The mechanism of their management within the limits of the investigated model is shown. The relations in the case of the problem of finding the natural frequency extremum with a given number are given, provided that the total amount of varied bands is fixed. The numerical control algorithm is based on the necessary optimality conditions in the form of the maximum principle for rod models. A variant of varying the area of the belts along the height of the mast is proposed. The sensitivity analysis for the first and second natural frequencies is carried out and its use for construction of effective computational process is shown. Based on the results of the work, a working software algorithm was created for fast analysis of mast oscillations on extensions. Graphs of zones of possible change of the first and second frequencies are resulted. The distribution of the cross-sectional area for frequencies is shown. To compare the results of natural frequency calculations on other calculation models, the first and second natural frequencies of bending oscillations were calculated by the finite element method in the SCAD complex. The errors for the points of the curves (constant in the height of the mast area of the belts) do not exceed 10%. It should be noted that the consideration of optimization problems of the above type on the basis of finite element models is quite difficult; for them it is not possible to formulate the necessary conditions of optimality similar to the principle of maximum.

2018 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Angelica Campigotto ◽  
Stephane Leahy ◽  
Ayan Choudhury ◽  
Guowei Zhao ◽  
Yongjun Lai

A novel, inexpensive, and easy-to-use strain sensor using polydimethylsiloxane (PDMS)  was developed. The sensor consists of a microchannel that is partially filled with a coloured liquid and embedded in a piece of PDMS. A finite element model was developed to optimize the geometry of the microchannel to achieve higher sensitivity. The highest gauge factor that was measured experimentally was 41. The gauge factor was affected by the microchannel’s square cross-sectional area, the number of basic units in the microchannel, and the inlet and outlet configuration. As a case study, the developed strain sensors were used to measure the rotation angle of the wrist and finger joints.


Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110609
Author(s):  
Hossein Talebi Rostami ◽  
Maryam Fallah Najafabadi ◽  
Davood Domiri Ganji

This study analyzed a Timoshenko beam with Koch snowflake cross-section in different boundary conditions and for variable properties. The equation of motion was solved by the finite element method and verified by Solidworks simulation in a way that the maximum error was about 2.9% for natural frequencies. Displacement and natural frequency for each case presented and compared to other cases. Significant research achievements illustrate that if we change the Koch snowflake cross-section of the beam from the first iteration to the second, the area and moment of inertia will increase, and we have a 5.2% rise in the first natural frequency. Similarly, by changing the cross-section from the second iteration to the third, a 10.2% growth is observed. Also, the hollow cross-section is considered, which can enlarge the natural frequency by about 26.37% compared to a solid one. Moreover, all the clamped-clamped, hinged-hinged, clamped-free, and free-free boundary conditions have the highest natural frequency for the Timoshenko beam with the third iteration of the Koch snowflake cross-section in solid mode. Finally, examining important physical parameters demonstrates that variable density from a minimum value to the standard value along the beam increases the natural frequencies, while variable elastic modulus decreases it.


2014 ◽  
Vol 2014 (4) ◽  
pp. 114-124
Author(s):  
Юрий Костенко ◽  
Yuriy Kostenko ◽  
Анатолий Чепурной ◽  
Anatoliy Chepurnoy ◽  
Александр Литвиненко ◽  
...  

The methods of direct perturbation for finite element models of thin-walled engineering constructions for sensitivity analysis of their strength, stiffness and dynamic characteristics to the change in their thickness are proposed. The approach for prediction of distribution for natural frequencies migration as result of change in their thickness are presented. The applicability of the linearized models to determine displacements, stresses and natural frequencies slightly thinned design compared to the nominal (original) are shown. The examples of test problems are given.


1995 ◽  
Vol 1 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Jamal A. Masad

A perturbation approach, coupled with the adjoint concept, is used to derive an analytic expression for the natural frequencies of a nearly rectangular membrane. The method is applied for a rectangular membrane with a semicircle at one of the boundaries. The fundamental natural frequency results for this configuration are presented and compared with results from a finite-element method and results from an approximate Galerkin method. The agreement between the fundamental natural frequencies calculated with the perturbation approach and those calculated with the finite-element method improves as the radius of the semicircle decreases and as the semicircle location becomes more eccentric.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


Author(s):  
Qing He ◽  
Dongmei Du

The disturbance of electric power system makes large-scale turbine-generator shafts generate torsional vibration. A available method to restrain the torsional vibration of turbine-generator shafts is that all the natural frequencies of torsional vibration of turbine-generator shafts must keep away from the working frequency and its harmonic frequencies as well as all the frequencies that possibly bring on interaction between turbine-generator and electric power system so that the torsional resonation of shafts may not occur. A dynamic design method for natural frequencies of torsional vibration of rotor system based on sensitivity analysis is presented. The sensitivities of natural frequency of torsional vibration to structure parameters of rotor system are obtained by means of the theory of sensitivity. After calculated the torsional vibration dynamic characteristics of original shafts of a torsional vibration stand that simulates the real shafts of 300MW turbine-generator, the dynamic modification for the torsional vibration natural frequency is carried out by the sensitivity analysis method, which makes the first-five natural frequencies of torsional vibration of the stand is very close to the design object. It is proved that the sensitivity analysis method can be used to the dynamic adjustment and optimal design of real shafts of turbine-generator.


2018 ◽  
Vol 40 (2) ◽  
pp. 1241-1265 ◽  
Author(s):  
János Karátson ◽  
Balázs Kovács ◽  
Sergey Korotov

AbstractThe maximum principle forms an important qualitative property of second-order elliptic equations; therefore, its discrete analogues, the so-called discrete maximum principles (DMPs), have drawn much attention owing to their role in reinforcing the qualitative reliability of the given numerical scheme. In this paper DMPs are established for nonlinear finite element problems on surfaces with boundary, corresponding to the classical pointwise maximum principles on Riemannian manifolds in the spirit of Pucci & Serrin (2007, The Maximum Principle. Springer). Various real-life examples illustrate the scope of the results.


2011 ◽  
Vol 255-260 ◽  
pp. 215-219
Author(s):  
Cheng Wei Huang ◽  
Rui Shao ◽  
De Li Zhang

The beam string structure,a new self-balancing system is a combination of a string (Cable), pole and beam-column (beam, arch). Because the beam string structure make full use of tensile properties of high-strength cord, force became more reasonable, transportation became more convenient and construction became more simple for the new self-balancing system. The beam string structure became a new structure with a good value and prospects. In this paper the effects of the static performance of the single truss string structure are researched through analyzing the influence of prestressed cable, pole pitch, blow-span ratio of cable and cross-sectional area of cable using of finite element theory. The results of the reasonable selection of string truss design parameters a valuable reference.


Sign in / Sign up

Export Citation Format

Share Document