scholarly journals Research on Control Technology of Concentrated Coal Mine Rail Transport Intelligence

2016 ◽  
Vol 3 (1) ◽  
pp. 38
Author(s):  
Guodong Song ◽  
Xiaohui Yang ◽  
Jianfeng Gao ◽  
Wenzhen Wu

<p class="p1"><span class="s1">Based on a matrix of interlocking control strategy, industrial plc control technology, field bus communication technology of mine shaft orbit transportation intelligent centralized control technology and implementation method are introduced in this paper. Line operation using the multi section partition method to draw intuitive control strategy, simplifying the interlock logic, to realize the intelligent management and dispatching of the railway train, improve transport efficiency; application of plc and fieldbus technology improves the stability and reliability of the system operation, convenient underground site operation personnel and ground remote scheduling scheduling staff to keep abreast of the train running state, issued instruction scheduling, to ensure the smooth of mine transportation operation. Promote the automation and intelligent development of coal transportation, to improve the level of information technology in coal mine production scheduling, decision-making is of great significance.</span></p>

2021 ◽  
pp. 1-31
Author(s):  
S.H. Derrouaoui ◽  
Y. Bouzid ◽  
M. Guiatni

Abstract Recently, transformable Unmanned Aerial Vehicles (UAVs) have become a subject of great interest in the field of flying systems, due to their maneuverability, agility and morphological capacities. They can be used for specific missions and in more congested spaces. Moreover, this novel class of UAVs is considered as a viable solution for providing flying robots with specific and versatile functionalities. In this paper, we propose (i) a new design of a transformable quadrotor with (ii) generic modeling and (iii) adaptive control strategy. The proposed UAV is able to change its flight configuration by rotating its four arms independently around a central body, thanks to its adaptive geometry. To simplify and lighten the prototype, a simple mechanism with a light mechanical structure is proposed. Since the Center of Gravity (CoG) of the UAV moves according to the desired morphology of the system, a variation of the inertia and the allocation matrix occurs instantly. These dynamics parameters play an important role in the system control and its stability, representing a key difference compared with the classic quadrotor. Thus, a new generic model is developed, taking into account all these variations together with aerodynamic effects. To validate this model and ensure the stability of the designed UAV, an adaptive backstepping control strategy based on the change in the flight configuration is applied. MATLAB simulations are provided to evaluate and illustrate the performance and efficiency of the proposed controller. Finally, some experimental tests are presented.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Author(s):  
Ziyu Zhang ◽  
Chunyan Wang ◽  
Wanzhong Zhao ◽  
Jian Feng

In order to solve the problems of longitudinal and lateral control coupling, low accuracy and poor real-time of existing control strategy in the process of active collision avoidance, a longitudinal and lateral collision avoidance control strategy of intelligent vehicle based on model predictive control is proposed in this paper. Firstly, the vehicle nonlinear coupling dynamics model is established. Secondly, considering the accuracy and real-time requirements of intelligent vehicle motion control in pedestrian crossing scene, and combining the advantages of centralized control and decentralized control, an integrated unidirectional decoupling compensation motion control strategy is proposed. The proposed strategy uses two pairs of unidirectional decoupling compensation controllers to realize the mutual integration and decoupling in both longitudinal and lateral directions. Compared with centralized control, it simplifies the design of controller, retains the advantages of centralized control, and improves the real-time performance of control. Compared with the decentralized control, it considers the influence of longitudinal and lateral control, retains the advantages of decentralized control, and improves the control accuracy. Finally, the proposed control strategy is simulated and analyzed in six working conditions, and compared with the existing control strategy. The results show that the proposed control strategy is obviously better than the existing control strategy in terms of control accuracy and real-time performance, and can effectively improve vehicle safety and stability.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xianyue Li ◽  
Yufei Pang ◽  
Chenxia Zhao ◽  
Yang Liu ◽  
Qingzhen Dong

AbstractGraph partition is a classical combinatorial optimization and graph theory problem, and it has a lot of applications, such as scientific computing, VLSI design and clustering etc. In this paper, we study the partition problem on large scale directed graphs under a new objective function, a new instance of graph partition problem. We firstly propose the modeling of this problem, then design an algorithm based on multi-level strategy and recursive partition method, and finally do a lot of simulation experiments. The experimental results verify the stability of our algorithm and show that our algorithm has the same good performance as METIS. In addition, our algorithm is better than METIS on unbalanced ratio.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Yufeng Zhao ◽  
Wenbin Ji ◽  
Jiaheng Mu ◽  
Fengbao Hu

Purpose This paper aims to present a control method to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system. Findings The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface. Originality/value The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.


2018 ◽  
Vol 92 (6) ◽  
pp. 732-742 ◽  
Author(s):  
Arka Jyoti Das ◽  
Prabhat Kumar Mandal ◽  
Satya Prakash Sahu ◽  
Angad Kushwaha ◽  
Rana Bhattacharjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document