scholarly journals Framework to Guide Rail type Adhesive Lifting Scaffolding in the Design and Application of High-rise Residential Buildings

2015 ◽  
Vol 4 (4) ◽  
pp. 1
Author(s):  
Man Mao ◽  
Rui Li ◽  
Ke Zeng

<p>As to combine with specific engineering practice, this paper presents a framework to guide rail type adhesive lifting scaffolding in high-rise residential building design and constructions well as changed the traditional characteristics of steel pipe scaffold by using new standard truss and scaffold board design All the connecting parts are connected by bolt, using electric wrench to install, and implementing the overall tools, systematic design and installation. Engineering practice proved that the frame rail type adhesive lifting scaffold can not only speed up the construction progress, control costs and improve economic efficiency, but also be popularized in similar engineering.</p>

2015 ◽  
Vol 4 (4) ◽  
pp. 1
Author(s):  
Man Mao ◽  
Rui Li ◽  
Ke Zeng

<p>As to combine with specific engineering practice, this paper presents a framework to guide rail type adhesive lifting scaffolding in high-rise residential building design and constructions well as changed the traditional characteristics of steel pipe scaffold by using new standard truss and scaffold board design All the connecting parts are connected by bolt, using electric wrench to install, and implementing the overall tools, systematic design and installation. Engineering practice proved that the frame rail type adhesive lifting scaffold can not only speed up the construction progress, control costs and improve economic efficiency, but also be popularized in similar engineering.</p>


2018 ◽  
Vol 3 (7) ◽  
pp. 357
Author(s):  
Lobna Hassan Ali Hassan Elgheriani ◽  
Parid Wardi ◽  
AbdulBasit Ali Ali Ahmed

Natural ventilation is an effectual passive design approach to create a better indoor thermal condition as well as energy efficiency. The primary goal of building design is providing a healthy and comfortable indoor environment titled as sustainable architecture. Literature suggests that the significant feature that alteration has to take place on for better energy performance is the envelope design. This paper aims to augment the Window to Wall Ratio (WWR), orientation and courtyard corridor size for improving the design of naturally ventilated courtyard high-rise residential buildings. Briefly, the findings indicate that contending with WWR, orientation and courtyard corridor size could increase the potential of improving its natural ventilation and thus, thermal performance.


Author(s):  
Sulfiah Dwi Astarini ◽  
Christiono Utomo

The complexity of the design in high-rise residential projects is a challenge for the construction industry in completing projects that fit the needs of users. Performance-Based Building Design (PBBD) appears as a design concept that can describe these needs into performance requirements. In this case designing a building can be considered as an iterative process of exploration, where desired functional properties can be created, the shapes are suggested, and evaluation processes is used, so as to bring together the shapes and functions of the building. This concept is a container for designers to produce high-performance buildings. This study aimed to identify the performance-based building design factors applied by architect designers and engineers in high-rise residential building in Surabaya. As part of this study, primary data was collected based on surveys conducted through observation and questionnaire distributed to designers who had or were involved in the high-rise residential design process in Surabaya. A total of sixty-eight respondents were included in this study. Descriptive analysis through a mean and standard deviation scatter plot was used to rank the application of PBBD. Meanwhile, factor analysis was used in the analysis of PBBD application factors. From the results of the analysis, four factors were obtained for the application of PBBD in high-rise residential buildings in Surabaya, namely; the interests of occupants, the sustainability of building operations, the design collaboration process, and the risk of loss. Future research is the influence relationships and measure the success model of PBBD at a higher level into BIM (Building Information Modeling) interoperability.


2020 ◽  
Vol 12 (17) ◽  
pp. 7103 ◽  
Author(s):  
Sulfiah Dwi Astarini ◽  
Christiono Utomo

The complexity of the design and completion of buildings poses a challenge for the construction industry in terms of meeting user needs. Performance-based building design (PBBD) is a design concept that describes these needs as performance requirements, designing buildings according to an iterative process of translating and evaluating the performance requirements of the buildings. PBBD is a concept that is used to produce buildings with high performance. This study aims to identify which PBBD factors are applied by architect and engineers in the planning and design of high-rise residential building in Surabaya, Indonesia. Primary data were collected by a survey using observation. A questionnaire was distributed to designers who were involved in design processes. A total of 68 respondents responded to the questionnaire. A descriptive analysis through a scatter plot was used to rank the application of PBBD. Factor analysis was used for the application of the PBBD concept. Four factors were identified: the interests of occupants, building management, process of design collaboration and risk of loss. Future research is needed to measure the success model of PBBD and to integrate PBBD into BIM (building information modeling) to allow interoperability.


2019 ◽  
Vol 4 (11) ◽  
pp. 81
Author(s):  
Lobna Elgheriani ◽  
Brian Cody

Nowadays, high-rise buildings are developing very fast to cater to the increase in demand in major urban cities. This phenomenon has contributed to several environmental problems in both construction and operation. High-rise buildings design parameters seem to lack contextual environmental consideration. Evaluating the impact of such design parameters is a practical approach to enhance the overall energy and thermal performance. Existing research gaps are distinguished based on this review. Future research directions are also proposed through a methodological scheme to investigate comparatively, the effects of different geometric factors on both thermal and energy performance, specifically in the high-rise residential buildings with consideration to different climatic regions. Keywords: Energy Performance; Thermal Performance; High-rise Buildings; High-rise Residential BuildingseISSN: 2398-4287 © 2019. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.DOI: https://doi.org/10.21834/e-bpj.v4i11.1717


2014 ◽  
Vol 953-954 ◽  
pp. 1481-1487
Author(s):  
Liu Jin

Windows energy saving design of residential buildings has increasingly got the attention of people. Through a large number of surveys and analysis of residential buildings in Chongqing and consumers personal experience, the author finds problems and deficiency, and then proposes principles of residential buildings sun shading reconstruction in Chongqing city. Taking the high-rise residential building of one university in Chongqing as reconstruction sample, selecting a specific time period, the author recalculates sun shading coefficient with and without sun shading by using Ecotect software to do simulation analysis. Finally, the reasonable reconstruction design pattern is put forward through cases. Keywords: Buildings Sun Shading, Sun Shading Reconstruction, Energy Saving


2017 ◽  
Vol 1 (3) ◽  
Author(s):  
Qiu Hao

Nowadays, under the  situation  of  the accelerating  process  of urbanization,  our  social economic development has also been leaps and bounds and  the  corresponding construction industry has also been high speed developed. Our country in the field of land resources still insist on a solid  strict  management control, therefore, in this context,it will inevitably lead the land resources to face with a tense situation which has become a great test forhigh-rise residential building construction as it appears repeatedly.  Normally, high-rise residential buildings have the characteristics of limited operating surface, high investment  cost,  long construction period and high requirements of construction technology. In view of this, this paper mainly analyzes the high-rise residential building construction technology.


2014 ◽  
Vol 638-640 ◽  
pp. 1606-1609
Author(s):  
Jae Min Shin ◽  
Gwang Hee Kim

In South Korea, the need for residential modular buildings has highlighted, due to the increase in demand for small housing and the high land price in urban area. Thus, the cruse housing system (CHS) was developed to build high-rise residential buildings. The object of this study is to analyze the characteristics and fabrication processes of CHS residential buildings when the in-fill construction method is adopted. The result of this study showed that there is the potential to utilize the fabrication processes of CHS in-fill construction system to build high-rise modular buildings.


Sign in / Sign up

Export Citation Format

Share Document