scholarly journals Machine Learning Combinatorial Frameworks for Architecture

Author(s):  
Joshua Lye ◽  
Alisa Andrasek

This paper investigates the application of machine learning for the simulation of larger architectural aggregations formed through the recombination of discrete components. This is primarily explored through establishing hardcoded assembly and connection logics which are used to form the framework of architectural fitness conditions for machine learning models. The key machine learning models researched are a combination of the deep reinforcement learning algorithm proximal policy optimization (PPO) and Generative Adversarial Imitation Learning (GAIL) in the Unity Machine Learning Agent asset toolkit. The goal of applying these machine learning models is to train the agent behaviours (discrete components) to learn specific logics of connection. In order to achieve assembled architectural `states that allow for spatial habitation through the process of simulation.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4546
Author(s):  
Weiwei Zhao ◽  
Hairong Chu ◽  
Xikui Miao ◽  
Lihong Guo ◽  
Honghai Shen ◽  
...  

Multiple unmanned aerial vehicle (UAV) collaboration has great potential. To increase the intelligence and environmental adaptability of multi-UAV control, we study the application of deep reinforcement learning algorithms in the field of multi-UAV cooperative control. Aiming at the problem of a non-stationary environment caused by the change of learning agent strategy in reinforcement learning in a multi-agent environment, the paper presents an improved multiagent reinforcement learning algorithm—the multiagent joint proximal policy optimization (MAJPPO) algorithm with the centralized learning and decentralized execution. This algorithm uses the moving window averaging method to make each agent obtain a centralized state value function, so that the agents can achieve better collaboration. The improved algorithm enhances the collaboration and increases the sum of reward values obtained by the multiagent system. To evaluate the performance of the algorithm, we use the MAJPPO algorithm to complete the task of multi-UAV formation and the crossing of multiple-obstacle environments. To simplify the control complexity of the UAV, we use the six-degree of freedom and 12-state equations of the dynamics model of the UAV with an attitude control loop. The experimental results show that the MAJPPO algorithm has better performance and better environmental adaptability.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6019
Author(s):  
José Manuel Lozano Domínguez ◽  
Faroq Al-Tam ◽  
Tomás de J. Mateo Sanguino ◽  
Noélia Correia

Improving road safety through artificial intelligence-based systems is now crucial turning smart cities into a reality. Under this highly relevant and extensive heading, an approach is proposed to improve vehicle detection in smart crosswalks using machine learning models. Contrarily to classic fuzzy classifiers, machine learning models do not require the readjustment of labels that depend on the location of the system and the road conditions. Several machine learning models were trained and tested using real traffic data taken from urban scenarios in both Portugal and Spain. These include random forest, time-series forecasting, multi-layer perceptron, support vector machine, and logistic regression models. A deep reinforcement learning agent, based on a state-of-the-art double-deep recurrent Q-network, is also designed and compared with the machine learning models just mentioned. Results show that the machine learning models can efficiently replace the classic fuzzy classifier.


2021 ◽  
Author(s):  
Aadhav Prabu

<p>Cardiopulmonary diseases are leading causes of death worldwide, accounting for nearly 15 million deaths annually. Accurate diagnosis and routine monitoring of these diseases by auscultation are crucial for early intervention and treatment. However, auscultation using a conventional stethoscope is low in amplitude and subjective, leading to possible missed or delayed treatment. My research aimed to develop a stethoscope called SmartScope powered by machine-learning to aid physicians in rapid analysis, confirmation, and augmentation of cardiopulmonary auscultation. Additionally, SmartScope helps patients take personalized auscultation readings at home effectively as it performs an intelligent selection of auscultation points interactively and quickly using the reinforcement learning agent: Deep Q-Network. SmartScope consists of a Raspberry Pi-enabled device, machine-learning models, and an iOS app. Users initiate the auscultation process through the app. The app communicates with the device using MQTT messaging to record the auscultation, which is augmented by an active band-pass filter and an amplifier. Additionally, the auscultation readings are refined by a Gaussian-shaped frequency filter and segmented by a Long Short-Term Memory Network. The readings are then classified using two Convolutional Recurrent Neural Networks. The results are displayed within the app and LCD. After the machine-learning models were trained, 90% accuracy for cardiopulmonary diseases was achieved, and the number of auscultation points was reduced threefold. SmartScope is an affordable, comprehensive, and user-friendly device that patients and physicians can widely use to monitor and accurately diagnose diseases like COPD, COVID-19, Asthma, and Heart Murmur instantaneously, as time is a critical factor in saving lives.</p>


2021 ◽  
Vol 20 ◽  
pp. 197-204
Author(s):  
Karina Litwynenko ◽  
Małgorzata Plechawska-Wójcik

Reinforcement learning algorithms are gaining popularity, and their advancement is made possible by the presence of tools to evaluate them. This paper concerns the applicability of machine learning algorithms on the Unity platform using the Unity ML-Agents Toolkit library. The purpose of the study was to compare two algorithms: Proximal Policy Optimization and Soft Actor-Critic. The possibility of improving the learning results by combining these algorithms with Generative Adversarial Imitation Learning was also verified. The results of the study showed that the PPO algorithm can perform better in uncomplicated environments with non-immediate rewards, while the additional use of GAIL can improve learning performance.


2021 ◽  
Author(s):  
Scott Kulm ◽  
Lior Kofman ◽  
Jason Mezey ◽  
Olivier Elemento

ABSTRACTA patient’s risk for cancer is usually estimated through simple linear models that sum effect sizes of proven risk factors. In theory, more advanced machine learning models can be used for the same task. Using data from the UK Biobank, a large prospective health study, we have developed linear and machine learning models for the prediction of 12 different cancers diagnoses within a 10 year time span. We find that the top machine learning algorithm, XGBoost (XGB), trained on 707 features generated an average area under the receiver operator curve of 0.736 (with a range of 0.65-0.85). Linear models trained with only 10 features were found to be statistically indifferent from the machine learning performance. The linear models were significantly more accurate than the prominent QCancer models (p = 0.0019), which are trained on 45 million patient records and available to over 4,000 United Kingdom general practices. The increase in accuracy may be caused by the consideration of often omitted feature types, including survey answers, census records, and genetic information. This approach led to the discovery of significant novel risk features, including self-reported happiness with own health (relevant to 12 cancers), measured testosterone (relevant to 8 cancers), and ICD codes for rehabilitation procedures (relevant to 3 cancers). These ten feature models can be easily implemented within the clinic, allowing for personalized screening schedules that may increase the cancer survival within a population.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Korsakov ◽  
A Gusev ◽  
T Kuznetsova ◽  
D Gavrilov ◽  
R Novitskiy

Abstract Abstract Background Advances in precision medicine will require an increasingly individualized prognostic evaluation of patients in order to provide the patient with appropriate therapy. The traditional statistical methods of predictive modeling, such as SCORE, PROCAM, and Framingham, according to the European guidelines for the prevention of cardiovascular disease, not adapted for all patients and require significant human involvement in the selection of predictive variables, transformation and imputation of variables. In ROC-analysis for prediction of significant cardiovascular disease (CVD), the areas under the curve for Framingham: 0.62–0.72, for SCORE: 0.66–0.73 and for PROCAM: 0.60–0.69. To improve it, we apply for approaches to predict a CVD event rely on conventional risk factors by machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR). Methods For machine learning, we applied logistic regression (LR) and recurrent neural networks with long short-term memory (LSTM) units as a deep learning algorithm. We extract from longitudinal EHR the following features: demographic, vital signs, diagnoses (ICD-10-cm: I21-I22.9: I61-I63.9) and medication. The problem in this step, that near 80 percent of clinical information in EHR is “unstructured” and contains errors and typos. Missing data are important for the correct training process using by deep learning & machine learning algorithm. The study cohort included patients between the ages of 21 to 75 with a dynamic observation window. In total, we got 31517 individuals in the dataset, but only 3652 individuals have all features or missing features values can be easy to impute. Among these 3652 individuals, 29.4% has a CVD, mean age 49.4 years, 68,2% female. Evaluation We randomly divided the dataset into a training and a test set with an 80/20 split. The LR was implemented with Python Scikit-Learn and the LSTM model was implemented with Keras using Tensorflow as the backend. Results We applied machine learning and deep learning models using the same features as traditional risk scale and longitudinal EHR features for CVD prediction, respectively. Machine learning model (LR) achieved an AUROC of 0.74–0.76 and deep learning (LSTM) 0.75–0.76. By using features from EHR logistic regression and deep learning models improved the AUROC to 0.78–0.79. Conclusion The machine learning models outperformed a traditional clinically-used predictive model for CVD risk prediction (i.e. SCORE, PROCAM, and Framingham equations). This approach was used to create a clinical decision support system (CDSS). It uses both traditional risk scales and models based on neural networks. Especially important is the fact that the system can calculate the risks of cardiovascular disease automatically and recalculate immediately after adding new information to the EHR. The results are delivered to the user's personal account.


Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 239 ◽  
Author(s):  
Menglin Li ◽  
Xueqiang Gu ◽  
Chengyi Zeng ◽  
Yuan Feng

Reinforcement learning, as a branch of machine learning, has been gradually applied in the control field. However, in the practical application of the algorithm, the hyperparametric approach to network settings for deep reinforcement learning still follows the empirical attempts of traditional machine learning (supervised learning and unsupervised learning). This method ignores part of the information generated by agents exploring the environment contained in the updating of the reinforcement learning value function, which will affect the performance of the convergence and cumulative return of reinforcement learning. The reinforcement learning algorithm based on dynamic parameter adjustment is a new method for setting learning rate parameters of deep reinforcement learning. Based on the traditional method of setting parameters for reinforcement learning, this method analyzes the advantages of different learning rates at different stages of reinforcement learning and dynamically adjusts the learning rates in combination with the temporal-difference (TD) error values to achieve the advantages of different learning rates in different stages to improve the rationality of the algorithm in practical application. At the same time, by combining the Robbins–Monro approximation algorithm and deep reinforcement learning algorithm, it is proved that the algorithm of dynamic regulation learning rate can theoretically meet the convergence requirements of the intelligent control algorithm. In the experiment, the effect of this method is analyzed through the continuous control scenario in the standard experimental environment of ”Car-on-The-Hill” of reinforcement learning, and it is verified that the new method can achieve better results than the traditional reinforcement learning in practical application. According to the model characteristics of the deep reinforcement learning, a more suitable setting method for the learning rate of the deep reinforcement learning network proposed. At the same time, the feasibility of the method has been proved both in theory and in the application. Therefore, the method of setting the learning rate parameter is worthy of further development and research.


2019 ◽  
Author(s):  
Mohammed Moreb ◽  
Oguz Ata

Abstract Background We propose a novel framework for health Informatics: framework and methodology of Software Engineering for machine learning in Health Informatics (SEMLHI). This framework shed light on its features, that allow users to study and analyze the requirements, determine the function of objects related to the system and determine the machine learning algorithms that will be used for the dataset.Methods Based on original data that collected from the hospital in Palestine government in the past three years, first the data validated and all outlier removed, analyzed using develop framework in order to compare ML provide patients with real-time. Our proposed module comparison with three Systems Engineering Methods Vee, agile and SEMLHI. The result used by implement prototype system, which require machine learning algorithm, after development phase, questionnaire deliver to developer to indicate the result using three methodology. SEMLHI framework, is composed into four components: software, machine learning model, machine learning algorithms, and health informatics data, Machine learning Algorithm component used five algorithms use to evaluate the accuracy for machine learning models on component.Results we compare our approach with the previously published systems in terms of performance to evaluate the accuracy for machine learning models, the results of accuracy with different algorithms applied for 750 case, linear SVG have about 0.57 value compared with KNeighbors classifier, logistic regression, multinomial NB, random forest classifier. This research investigates the interaction between SE, and ML within the context of health informatics, our proposed framework define the methodology for developers to analyzing and developing software for the health informatic model, and create a space, in which software engineering, and ML experts could work on the ML model lifecycle, on the disease level and the subtype level.Conclusions This article is an ongoing effort towards defining and translating an existing research pipeline into four integrated modules, as framework system using the dataset from healthcare to reduce cost estimation by using a new suggested methodology. The framework is available as open source software, licensed under GNU General Public License Version 3 to encourage others to contribute to the future development of the SEMLHI framework.


2021 ◽  
Vol 12 (1) ◽  
pp. 269
Author(s):  
Máté Szűcs ◽  
Tamás Szepesi ◽  
Christoph Biedermann ◽  
Gábor Cseh ◽  
Marcin Jakubowski ◽  
...  

The detachment regime has a high potential to play an important role in fusion devices on the road to a fusion power plant. Complete power detachment has been observed several times during the experimental campaigns of the Wendelstein 7-X (W7-X) stellarator. Automatic observation and signaling of such events could help scientists to better understand these phenomena. With the growing discharge times in fusion devices, machine learning models and algorithms are a powerful tool to process the increasing amount of data. We investigate several classical supervised machine learning models to detect complete power detachment in the images captured by the Event Detection Intelligent Camera System (EDICAM) at the W7-X at each given image frame. In the dedicated detached state the plasma is stable despite its reduced contact with the machine walls and the radiation belt stays close to the separatrix, without exhibiting significant heat load onto the divertor. To decrease computational time and resources needed we propose certain pixel intensity profiles (or intensity values along lines) as the input to these models. After finding the profile that describes the images best in terms of detachment, we choose the best performing machine learning algorithm. It achieves an F1 score of 0.9836 on the training dataset and 0.9335 on the test set. Furthermore, we investigate its predictions in other scenarios, such as plasmas with substantially decreased minor radius and several magnetic configurations.


Sign in / Sign up

Export Citation Format

Share Document