scholarly journals A clinical case of cystic fibrosis patient with pathogenic N1303K genotype variant with assessment of the CFTR channel function by intestinal current measurement and forskolin-induced swelling in rectal organoids

2020 ◽  
Vol 49 ◽  
Author(s):  
E. I. Kondratyeva ◽  
N. D. Odinaeva ◽  
V. D. Sherman ◽  
A. S. Efremova ◽  
Yu. L. Melyanovskaya ◽  
...  

Rationale: Cystic fibrosis is a  common monogenic disease related to pathogenic nucleotide sequence variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) (ABCC7) gene. The CFTR gene consists of 27 exons and is located in the 31.1 region on the long arm of chromosome 7 (7q31.1). The use of the sequencing method has led to the accumulation of new information about the diversity of genetic variants in cystic fibrosis. This information is important considering approaches to the development of targeted therapy for the disease, based on an individual genotype. No targeted therapy has been developed for the N1303K class II genetic variant. The function of the chloride channel in this mutation has not been compared with that in class II mutations like F508del.Materials and methods: We have analyzed medical files of a patient with cystic fibrosis and F508del/N1303K CFTR genotypes, including the results of rectal biopsy samples. The assessments included measurement of the intestinal potential difference and forskolin-induced swelling assay (FIS) in rectal organoids, with the results being analyzed in relation to the clinical data.Results: The results of intestinal current measurements (ICM) confirm that the N1303K genetic variant is “severe” and leads to the loss of the working CFTR protein, which is consistent with the clinical manifestations. The mean short circuit currency density (ΔISC) in response to amiloride (sodium channel stimulation) was -39±1.22  µA/cm2 , to forskolin (chloride channel stimulation) 3.83±1.43  µA/cm2 , to carbachol 6±2.47  µA/cm2 , and to histamine 8.5±3.02 µA/cm2 . FIS results indicate that the VX-770  potentiator and the VX-809  corrector have a  weak effect on the stimulation of organoids by forskolin in the genetic variant N1303K: organoid swelling was non-significant (about 20%  from their baseline size).Conclusion: The use of the ICM method and FIS assay in human intestinal organoids makes it possible to quantify the work of the CFTR protein and determine the in vitro effectiveness of targeted therapy in patients with cystic fibrosis. CFTR modulators are ineffective in patients with N1303K mutation in the compound-heterozygous condition with F508del, despite both pathogenic variants belong to class II.

2021 ◽  
Author(s):  
Sriram Vaidyanathan ◽  
Ron Baik ◽  
Lu Chen ◽  
Dawn T. Bravo ◽  
Carlos J. Suarez ◽  
...  

AbstractCystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR/Cas9 and two adeno-associated viruses (AAV) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial basal stem cells (HBECs). The modified cells were enriched to obtain 60-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.


Author(s):  
A. Efremova ◽  
T. Bukharova ◽  
N. Petrova ◽  
N.Kashirskaya Kashirskaya ◽  
Y. Melyanovskaya ◽  
...  

Cystic fibrosis (CF) is the most common life-threatening autosomal recessive disease. CF is caused by mutations in the CFTR gene that encodes an anionic channel, which is expressed in epithelial cells. The most common genetic variant is F508del, its allelic frequency in the Russian Federation 52.81% (2017). This variant belongs to class II, leads to incorrect folding of the CFTR protein and its premature degradation. Currently, the effectiveness of target therapy can be individually evaluated by forskolin-induced swelling (FIS) assay on intestinal organoids obtained from CF patients with different genotypes.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2844
Author(s):  
Laurence S. Hanssens ◽  
Jean Duchateau ◽  
Georges J. Casimir

Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in a gene encoding a protein called Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). The CFTR protein is known to acts as a chloride (Cl−) channel expressed in the exocrine glands of several body systems where it also regulates other ion channels, including the epithelial sodium (Na+) channel (ENaC) that plays a key role in salt absorption. This function is crucial to the osmotic balance of the mucus and its viscosity. However, the pathophysiology of CF is more challenging than a mere dysregulation of epithelial ion transport, mainly resulting in impaired mucociliary clearance (MCC) with consecutive bronchiectasis and in exocrine pancreatic insufficiency. This review shows that the CFTR protein is not just a chloride channel. For a long time, research in CF has focused on abnormal Cl− and Na+ transport. Yet, the CFTR protein also regulates numerous other pathways, such as the transport of HCO3−, glutathione and thiocyanate, immune cells, and the metabolism of lipids. It influences the pH homeostasis of airway surface liquid and thus the MCC as well as innate immunity leading to chronic infection and inflammation, all of which are considered as key pathophysiological characteristics of CF.


1998 ◽  
Vol 53 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Satoko Hojo ◽  
Jiro Fujita ◽  
Hiroshi Miyawaki ◽  
Yuka Obayashi ◽  
Jiro Takahara ◽  
...  

Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 52-54
Author(s):  
Nicolas Lamontagne

Cystic fibrosis (CF) is a progressive life–shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leading to a dysfunctional CFTR protein. The disease affects over 70,000 patients worldwide and while many mutations are known, the F508del mutation affects 90% of all patients. The absence of CFTR in the plasma membrane leads to a dramatic decrease in chloride efflux, resulting in viscous mucus that causes severe symptoms in vital organs like the lungs and intestines. For CF patients that suffer from the life threatening F508del mutation only palliative treatment exist. PRO–CF–MED addresses the specific challenge of this call by introducing the first disease modifying medication for the treatment of the CF patients with F508del mutation. The PRO–CF–MED project has been designed to assess the potential clinical efficacy of QR–010, an innovative disease modifying oligonucleotide–based treatment for F508del patients. Partners within PRO–CF–MED have generated very promising preclinical evidence for QR–010 which allows for further clinical assessment of QR–010 in clinical trials. PRO–CF–MED will enable the fast translation of QR–010 towards clinical practice and market authorisation. PRO–CF–MED has the potential to transform this life–threatening condition into a manageable one.


1994 ◽  
Vol 269 (15) ◽  
pp. 10983-10986
Author(s):  
V.K. Gribkoff ◽  
G. Champigny ◽  
P. Barbry ◽  
S.I. Dworetzky ◽  
N.A. Meanwell ◽  
...  

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Saeedeh Talebi ◽  
Mahammad Safarian ◽  
Mahmood Reza Jaafari ◽  
Seyed Javad Sayedi ◽  
Zahra Abbasi ◽  
...  

Abstract Background Cystic fibrosis (CF) is a genetic disorder, which is caused by the CFTR protein defects. Along with CFTR dysfunction, inflammation plays a key role in the disease outcomes. Inflammation may develop due to the internal dysfunction of the CFTR protein or external factors. Curcumin affects the CFTR protein function primarily as a corrector and potentiator and secondary as an anti-inflammatory and antimicrobial agent. The present study aims to assess the impact of nano-curcumin on clinical and inflammatory markers in children with CF. Methods This prospective, double blind control trial will be conducted at the Akbar Children’s Hospital in Mashhad, Iran. Children with CF will be enrolled based on the eligibility criteria. Placebo and curcumin with the maximum dose of 80 mg considering the body surface of the patients will be administrated for 3 months. The primary outcome is to evaluate inflammation based on serum interleukin-6, interleukin-10, and hs-CRP, stool calprotectin, and neutrophil count of nasopharyngeal swab. The secondary outcome involved clinical assessment via spirometry, anthropometrics, and quality of life. They will be assessed before and after 3 months. Discussion Due to the multifarious effects of curcumin on CF disease, it could be proposed as a nutritional strategy in the treatment of cystic fibrosis. Trial registration Iranian Registry of Clinical Trials IRCT20200705048018N1. Registered on July 10, 2020.


1999 ◽  
Vol 79 (1) ◽  
pp. S23-S45 ◽  
Author(s):  
DAVID N. SHEPPARD ◽  
MICHAEL J. WELSH

Sheppard, David N., and Michael J. Welsh. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79 , Suppl.: S23–S45, 1999. — The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl− channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.


2005 ◽  
Vol 16 (5) ◽  
pp. 2154-2167 ◽  
Author(s):  
Silvia M. Kreda ◽  
Marcus Mall ◽  
April Mengos ◽  
Lori Rochelle ◽  
James Yankaskas ◽  
...  

Previous studies in native tissues have produced conflicting data on the localization and metabolic fate of WT and ΔF508 cystic fibrosis transmembrane regulator (CFTR) in the lung. Combining immunocytochemical and biochemical studies utilizing new high-affinity CFTR mAbs with ion transport assays, we examined both 1) the cell type and region specific expression of CFTR in normal airways and 2) the metabolic fate of ΔF508 CFTR and associated ERM proteins in the cystic fibrosis lung. Studies of lungs from a large number of normal subjects revealed that WT CFTR protein localized to the apical membrane of ciliated cells within the superficial epithelium and gland ducts. In contrast, other cell types in the superficial, gland acinar, and alveolar epithelia expressed little WT CFTR protein. No ΔF508 CFTR mature protein or function could be detected in airway specimens freshly excised from a large number of ΔF508 homozygous subjects, despite an intact ERM complex. In sum, our data demonstrate that WT CFTR is predominantly expressed in ciliated cells, and ΔF508 CFTR pathogenesis in native tissues, like heterologous cells, reflects loss of normal protein processing.


Sign in / Sign up

Export Citation Format

Share Document