Effect of planting methods and irrigation levels on water productivity of onion (Allium cepa L.)

2017 ◽  
Vol 51 (05) ◽  
Author(s):  
M. S. Kahlon

To investigate the effect of planting methods and irrigation levels on irrigation water productivity and onion (Allium cepa L.) yield, a field experiment was conducted on sandy loam soil at the Research Farm of Department of Soil Science, Punjab Agricultural University, Ludhiana during rabi 2011-12. Three planting methods tested include drip irrigated beds, furrow irrigated beds and flat flood irrigation. In drip irrigated beds and furrow irrigated beds three onion rows were planted on 55 cm wide beds at a spacing of 15 cm from row to row. Three levels of irrigation water were tested i.e. IW/PAN-E ratio of 0.3, 0.4 and 0.5 in drip irrigated onions and 1.2, 1.6 and 2.0 in both bed furrow and flat flood methods of irrigation. The results of the experiment indicated that in drip irrigated beds by applying same quantity and 50 per cent of water as of flat flood irrigation, the yield was increased by 43 and 25 per cent, respectively. Irrespective of irrigation levels, highest onion yield (32.5 t ha-1) was recorded under drip irrigated beds followed by furrow irrigated beds (28.5 t ha-1) and least under flat flood irrigation method (25.0 t ha-1). The onion yield increases with the increase in irrigation level in all the planting methods. The highest irrigation water productivity was observed under drip irrigated beds (1.26 t ha-1 cm) followed by furrow irrigated beds (0.84 t ha-1 cm) and least under flat flood irrigation (0.48 t ha-1 cm) with equivalent IW/PAN-E ratios. Bigger size onions (40 mm and 50 mm) were observed under drip irrigated beds followed by furrow irrigated beds and smallest size bulbs under flat flood method of irrigation. The results revealed that drip irrigation could successfully be used for onion production with significant water saving and higher production.

2016 ◽  
Vol 53 (2) ◽  
pp. 178-201 ◽  
Author(s):  
RAJAN BHATT ◽  
S. S. KUKAL

SUMMARYThe resource conservation technologies (RCTs), being advocated for countering the threat to the sustainability of wheat–rice cropping system (RWCS) in the north–west (NW) Indo-Gangetic Plains (IGP) of India, have been evaluated mostly for the individual crops, without depicting the impact of these technologies on the succeeding or preceding crop. A study was thus conducted during 2012–2014 in NW India to assess the land and irrigation water productivity (WPI) of RWCS under different establishment and conservation tillage techniques in a sandy-loam soil (coarse loamy, calcareous, mixed, hyperthermic Typic Ustochrept). The treatments included zero (ZTW) and conventional (CTW) tillage in wheat as main plot, establishment methods (direct seeded (DSR) and mechanically transplanted rice (MTR)) as sub-plot and tillage in rice viz. puddle (PR), dry (CTR) and zero (ZTR) tillage as sub–sub plot treatments, replicated thrice in split–split plot design. The land productivity of RWCS was significantly lower in ZTW plots than in CTW plots. The residual effect of tillage in wheat on rice productivity was distinct during the second year of study, when the CTW plots recorded significantly higher (17.5%) rice yield than the ZTW plots. The productivity of the cropping system with DSR was statistically similar to that with MTR. The WPI of RWCS increased in the order ZTW–DSR–ZTR25 < CTW–DSR–ZTR < ZTW–MTR–CTR < ZTW–DSR–PR < CTW–DSR–PR < ZTW–MTR–PR26 < CTW–MTR–PR.


2019 ◽  
Vol 56 (3) ◽  
pp. 331-346
Author(s):  
Hayat Ullah ◽  
Suman Giri ◽  
Ahmed Attia ◽  
Avishek Datta

AbstractModification of the existing cropping practice is needed to maintain rice (Oryza sativa L.) productivity and reduce irrigation water input. A 2-year field experiment was conducted during the dry rice growing season of 2016 and 2017 at the Asian Institute of Technology, Pathum Thani, Thailand, to investigate the effects of establishment method and irrigation level on growth, yield, and water productivity of irrigated lowland rice. The treatments consisted of two Thai rice cultivars (Pathumthani 1 and RD57), two establishment methods (dry direct seeding [DDS] and transplanting [TP]), and three irrigation levels (continuous flooding [CF], 15 cm threshold water level below the soil surface for irrigation [AWD15], and 30 cm threshold water level below the soil surface for irrigation [AWD30]). Overall, the performance of RD57 was better than Pathumthani 1 under DDS with 50% higher grain yield and 90% higher water productivity at AWD15. RD57 also had higher shoot dry matter, number of tiller m–2, and number of panicle m–2 across establishment methods and irrigation levels. Grain yield and water productivity of RD57 were similar under two establishment methods across irrigation levels, whereas the performance of TP was better than DDS for Pathumthani 1 irrespective of irrigation levels. The highest grain yield and water productivity of Pathumthani 1 was observed at AWD15 under TP and that of RD57 under both establishment methods at the same irrigation level. AWD15 saved 26 and 32% irrigation water under TP and DDS, respectively, compared with TP-CF treatment combination. AWD15 irrigation level could be recommended for greater water productivity without compromising yield when Pathumthani 1 is cultivated through TP and RD57 is cultivated through either DDS or TP. Although water-saving potential was higher compared with CF, AWD30 is not recommended for irrigated lowland rice cultivation due to significant yield reduction.


2021 ◽  
Vol 64 (1) ◽  
pp. 287-298
Author(s):  
Ruixiu Sui ◽  
Jonnie Baggard

HighlightsWe developed and evaluated a variable-rate irrigation (VRI) management method for five crop years in the Mississippi Delta.VRI management significantly reduced irrigation water use in comparison with uniform-rate irrigation (URI). There was no significant difference in grain yield and irrigation water productivity between VRI and URI management.Soil apparent electrical conductivity (ECa) was used to delineate irrigation management zones and generate VRI prescriptions.Sensor-measured soil water content was used in irrigation scheduling.Abstract. Variable-rate irrigation (VRI) allows producers to site-specifically apply irrigation water at variable rates within a field to account for the temporal and spatial variability in soil and plant characteristics. Developing practical VRI methods and documenting the benefits of VRI application are critical to accelerate the adoption of VRI technologies. Using apparent soil electrical conductivity (ECa) and soil moisture sensors, a VRI method was developed and evaluated with corn and soybean for five crop years in the Mississippi Delta. Soil ECa of the study fields was mapped and used to delineate VRI management zones and create VRI prescriptions. Irrigation was scheduled using soil volumetric water content measured by soil moisture sensors. A center pivot VRI system was employed to deliver irrigation water according to the VRI prescription. Grain yield, irrigation water use, and irrigation water productivity in the VRI treatment were determined and compared with that in a uniform-rate irrigation (URI) treatment. Results showed that the grain yield and irrigation water productivity between the VRI and URI treatments were not statistically different with both corn and soybean crops. The VRI management significantly reduced the amount of irrigation water by 22% in corn and by 11% in soybean (p = 0.05). Adoption of VRI management could improve irrigation water use efficiency in the Mississippi Delta. Keywords: Soil electrical conductivity, Soil moisture sensor, Variable rate irrigation, Water management.


Sign in / Sign up

Export Citation Format

Share Document