Evaluation of different fungicides and antagonists In vitro and In vivo condition against Alternaria blight of pigeonpea

Author(s):  
Laxman Prasad Balai ◽  
R. B. Singh ◽  
Asha Sinha ◽  
S. M. Yadav

Efficacy of bio agents and systemic and non-systemic fungicides @ 50, 100, 200, 250 and 500 ppm were evaluated In vitro against Alternaria tenuissima causing Alternaria blight of pigeonpea. The relative efficacy of bio agents were studied in dual culture plate method showed that Hypocrea rufa was found most effective antagonist against test pathogen followed by T. harzianum. Efficacy of six fungicides was tested in poisoned food technique. Among the six fungicides tested, mancozeb was found most effective against test pathogen followed by Chlorothalonil and Iprodione. Propineb was least effective against mycelial growth of test pathogen. Raise in concentration of fungicides was more effective in inhibiting the mycelial growth of the pathogen. Field condition studies were found out to be the effect of seed treatment, foliar spray, seed treatment+ foliar spray with six fungicides and two bio agents and their combination used as against pathogen. Artificial inoculation of mass culture of A. tenuissima was done in the inoculated seed treatment and after foliar spray on the plants sixty DAS. Amongst them twenty five treatments, combination of Mancozeb with H. rufa was found most effective in reducing the disease intensity and disease control followed by Mancozeb with T. harzianum and Mancozeb alone, respectively. While, T. harzianum alone was least effective and maximum disease intensity recorded as a compared to control followed by T. harzianum with double dose and T. harzianum and H. rufa combination treatment, respectively. In case of both seed treatment and foliar spray of Mancozeb with H. rufa was found most effective in reducing the disease intensity and disease control followed by combination of Mancozeb with T. harzianum and Mancozeb alone, respectively. Whereas, least effective and maximum disease intensity and disease control were observed T. harzianum alone as compared to control.

2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


Author(s):  
Divya Bhandhari ◽  
Amar Singh ◽  
J.V. Patel ◽  
D.K. Banyal

Background: Colocasia is cultivated globally for its edible corm and leaves. Leaf blight incited by Phytophthora colocasiae is the most destructive disease of colocasia. The current study aims at biological management of the disease. Methods: Nine Trichoderma isolates from the colocasia rhizosphere soil along with five designated isolates of Trichoderma spp. already available in the Department of Plant Pathology, CSK HPKV, Palampur were tested in vitro for antagonistic activity against P. colocasiae. Similarly, six unidentified bacterial strains isolated from colocasia phylloplane and available Pseudomonas fluorescens were evaluated for antagonistic activity against P. colocasiae under in vitro conditions. The bioagents found best under in vitro conditions were evaluated in vivo. Result: Trichoderma isolate Ti-6 was found significantly superior bioagent as it resulted in 72.9 per cent mycelial growth inhibition of P. colocasiae followed by Ti-5 (63.2%), Ti-4 (60.1%) and Ti-1 (54.5%). Amongst bacterial antagonists, Pseudomonas fluorescens gave maximum mycelial growth inhibition of 50.5 per cent followed by Pb-3 (31.4%) and Pb-6 (30.5%). The efficacy of five Trichoderma spp isolates viz., Ti-6, Ti-5, Ti-4, Ti-1, T. viride and one bacterial isolate of P. fluorescens found effective under in vitro were also evaluated in vivo using three delivery systems under net house condition. Corm treatment with bioagents was found superior for management of colocasia blight. Corm treatment with Ti-6 was found to be significantly superior to other treatments as 93.74 per cent of disease control was observed. For drenching, bioagent Ti-6 was proved best in managing blight disease (88.91%) followed by Ti-5 (88.90%). However, Ti-5 isolate of Trichoderma sp. as soil application was found superior with 90.02 per cent disease control.


2021 ◽  
Author(s):  
Zahra Alijani ◽  
Jahanshir Amini ◽  
Ali akbar Mozafari

Abstract An endophytic bacterial strain, isolated from Fragaria × ananassa, and antifungal properties against Colletotrichum nymphaeae was assayed under in vitro, in vivo, and greenhouse experiments. Bacterial strain was identified as Bacillus spp. DM12 (MH161581) using phenotypic, biochemical and molecular phylogenetic analysis of the 16S rDNA gene. DM12 strain inhibited mycelial growth of fungal pathogen (64.03%) using dual-culture test. The cell-free culture compounds produced by DM12 prevented mycelial growth and conidial germination of C. nymphaeae by 32.86% and 73.98%, respectively but, inhibition percentage of mycelial growth of pathogen by volatile compounds was less (9.82%). As well as, protease, chitinase, pectinase, siderophore, IAA, gibberellin, and phosphate solubilization tests for this strain were positive. Anthracnose disease at post-harvest on fruit suppressed by the strain DM12 (90.87%). Also, biocontrol efficacy on strawberry plants by drenching soil and spraying methods were 72.22% and 94.44%, respectively, 60 days after inoculation. PCR amplification represented the presence of genes of surfactin. In addition, metabolite profile of strawberry was changed on presence of bacterial strain that a number of metabolites in control treatment with maximum area percent were Acetoglyceride (19.418%), Acetic acid, butyl ester (4.734%) and Ribitol (4.349%), in treatment inoculated with DM12 strain alone were Tetramethyl-2-hexadecen (21.350%), Ethylene glycol monoisobutyl ether (18.688%) and Myrtenol (8.75%), in treatment inoculated with fungal pathogen alone were Acetoglyceride (18.089%) and Acetic acid, monoglyceride (17.96%) and in treatment inoculated with C. nymphaeae and DM12 strain together were tert-Butanethiol (36.153%), Ethoxytriethylsilane (14.126%), 5-(Methylamino)-1,2,3,4-thiatriazole (9.53%) and 2,3-Butanediol (7.795%).


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Nadia Lyousfi ◽  
Rachid Lahlali ◽  
Chaimaa Letrib ◽  
Zineb Belabess ◽  
Rachida Ouaabou ◽  
...  

The main objective of this study was to evaluate the ability of both antagonistic bacteria Bacillus amyloliquefaciens (SF14) and Alcaligenes faecalis (ACBC1) used in combination with salicylic acid (SA) to effectively control brown rot disease caused by Monilinia fructigena. Four concentrations of salicylic acid (0.5%, 2%, 3.5%, and 5%) were tested under in vitro and in vivo conditions. Furthermore, the impact of biological treatments on nectarine fruit parameters’ quality, in particular, weight loss, titratable acidity, and soluble solids content, was evaluated. Regardless of the bacterium, the results indicated that all combined treatments displayed a strong inhibitory effect on the mycelial growth of M. fructigena and disease severity. Interestingly, all SA concentrations significantly improved the biocontrol activity of each antagonist. The mycelial growth inhibition rate ranged from 9.79% to 88.02% with the highest reduction rate recorded for bacterial antagonists in combination with SA at both concentrations of 0.5% and 3.5%. The in vivo results confirmed the in vitro results with a disease severity varying from 0.00% to 51.91%. A significant biocontrol improvement was obtained with both antagonistic bacteria when used in combination with SA at concentrations of 0.5% and 2%. The lowest disease severity observed with ACBC1 compared with SF14 is likely due to a rapid adaptation and increase of antagonistic bacteria population in wounded sites. The impact of all biological treatments revealed moderate significant changes in the fruit quality parameters with weight loss for several treatments. These results suggest that the improved disease control of both antagonistic bacteria was more likely directly linked to both the inhibitory effects of SA on pathogen growth and induced fruit resistance.


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2017 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Tatsuya Ohike ◽  
Minori Maeda ◽  
Tetsuya Matsukawa ◽  
Masahiro Okanami ◽  
Shin’ichiro Kajiyama ◽  
...  

Rhizoctonia solani is fungal plant pathogen that infects many different host plants. Recently, biological control agents that are friendly to the environment and ecosystems have attracted much attention as an alternative to the use of chemical fungicide which have been used worldwide to control soil borne pathogens including R. solani. In this study, 53 strains of actinomycetes isolated from environmental soils, and antifungal activities of them were assessed by the dual culture assay. Strain KT showed strong inhibitory activities against 8 phytopathogenic fungi. A great suppressive effect on R. solani growth was observed in the inoculation test of plants using cucumber and chin-geng-sai. In addition, infection of Bipolaris oryzae also could be suppressed in the detached leaf assay using oats. As a result of genetic analysis, it was shown that KT was a species closely related to Streptomyces lavenduligriseus NRRL B-3173T. However, as far as we know, there is no report for biological control agents using S. lavenduligriseus. This study suggests that the strain KT may useful as biological control agents to suppress various crop diseases.


2010 ◽  
Vol 2 (3) ◽  
pp. 72-76 ◽  
Author(s):  
Bilal Ahmad PADDER ◽  
Prem Nath SHARMA ◽  
Renu KAPIL ◽  
Anju PATHANIA ◽  
Om Prakash SHARMA

Three bioagents (Trichoderma viride, T. harzianum and Gliocladium virens) and five biopesticides (Achook, Neemgold, Wannis, Spictaf and Neemazal) were evaluated under in vitro and in vivo conditions against Colletotrichum lindemuthianum. All the three antagonistic fungi caused significant inhibition of mycelial growth, maximum being with T. viride (69.21%) followed by T. harzianum (64.20%). Among the biopesticides tested at four concentrations, Wanis applied @ 1000 ?l/ml caused maximum inhibition of 82.12 per cent followed by Spictaf (52.85%). T. viride and Wanis @ 1000 ?l/ml were most effective in reducing the seed borne infection. Integration of bioagents with Bavistin showed that disease can be effectively managed with seed dressing either with Bavistin or biopesticide followed by foliar treatment with fungicide or biopesticide.


2021 ◽  
Vol 8 (01) ◽  
Author(s):  
KAMLESH RAM ◽  
RAMESH SINGH

In Vitro and In Vivo studies on the efficacy of fungicides and biopesticides. Among the fungicides, in Carbedazim to the most effective as they have inhibited the mycelia growth completely of the test fungus, and Benomyl, Topsin - M, Ridomil,Vitavax were found the next best in inhibiting the mycelial growth of the pathogen up to 92.11% to 83.46% respectively. Sadabahar was least effective plant extracts which causes 42 mm of radial growth and inhibited the growth of the only 19.23%. In Vivo condition the maximum seed germination (95.50% and 95.33%), minimum wilt incidence (5.16% and 3.65%) and highest grain yield (10.50 q/ha and 10.35 q/ha) was found seed treatment with Carbendazim (0.2%). Among the test plant extracts Tulsi was lested effective, which show the minimum seed germination (80.00% and 77.50%), maximum wilt incidence (15.70% and 14.10%), and lowest grain yield (3.92 q/ha and 4.17 q/ha).


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
E. K. Wanjiku ◽  
J. W. Waceke ◽  
J. N. Mbaka

Demand for organic avocado fruits, together with stringent food safety standards in the global market, has made producers to use alternative, safe, and consumer-friendly strategies of controlling the postharvest fungal disease of avocado fruits. This study assessed the in vitro efficacy of Trichoderma spp. (T. atroviride, T. virens, T. asperellum, and T. harzianum) against isolated avocado stem-end rot (SER) fungal pathogens (Lasiodiplodia theobromae, Neofusicoccum parvum, Nectria pseudotrichia, and Fusarium solani) using a dual culture technique. The Trichoderma spp. were also evaluated singly on postharvest “Hass” avocado fruits. Spore suspension at 5 × 104 conidial/ml of the Trichoderma spp. was applied on the avocado fruits at three time points, twenty-four hours before the fungal pathogen (preinoculation), at the same time as the fungal pathogen (concurrent inoculation), and 24 hours after the fungal pathogen (postinoculation). In the in vitro study, T. atroviride showed the highest mycelial growth inhibition against N. parvum (48%), N. pseudotrichia (55%), and F. solani (32.95%), while T. harzianum had the highest mycelial growth inhibition against L. theobromae. Trichoderma asperellum was the least effective in inhibiting the mycelial growth of all the pathogens. Similarly, T. virens showed the highest mycelial growth inhibition against N. pseudotrichia at 45% inhibition. On postharvest “Hass” fruits, T. atroviride showed the highest efficacy against N. parvum, N. pseudotrichia, and F. solani in all the applications. Trichoderma virens and T. harzianum were most effective against all the pathogens during postinoculation, while Lasiodiplodia theobromae was best controlled by T. virens, T. harzianum, and T. asperellum during postinoculation. Both T. atroviride and T. harzianum present a potential alternative to synthetic fungicides against postharvest diseases of avocado fruits, and further tests under field conditions to be done to validate their efficacy. The possibility of using Trichoderma spp. in the management of SER on avocado fruits at a commercial level should also be explored.


1969 ◽  
Vol 49 (4) ◽  
pp. 443-461
Author(s):  
Alex G. Alexander

Variable levels of the elements molybdenum, calcium, iron, lead, and boron, as well as trichloroacetic acid, ß-glycerophosphate, and starch, were supplied to immature sugarcane grown in the greenhouse. Molybdenum, calcium, and iron were provided in factorial combination to plants in sand culture. Molybdenum, lead, and starch were applied as foliar sprays to a second group of plants grown in soil, and boron, ß-glycerophosphate, plus trichloroacetic acid were likewise applied to the foliage of plants grown in soil. The objectives of these experiments were to determine whether any of the applied materials could alter the action of specific enzymes, and, if so, whether significantly greater sucrose content would result. Leaf and meristem tissues were assayed for sugars, and for the enzymes amylase, invertase, acid phosphatases, starch phosphorylase, peroxidase, and polyphenol oxidase. Molybdenum significantly increased sucrose when applied as a foliar spray (80 p.p.m.), and as a nutrient in sand culture (1 p.p.m.). The molybdenum effect was retarded or reversed when either high calcium (9 p.p.m.) or high iron (6 p.p.m.) was supplied concurrently. Acid phosphatases and amylase were suppressed by high molybdenum, although these effects were greatly dependent upon calcium and iron supply. When applied as a foliar spray, molybdenum suppressed amylase and the phosphatase hydrolyzing glucose-1-phosphate, but not ATP-ase or ß-glycerophosphatase. Invertase was suppressed by high iron (6 p.p.m.) when molybdenum and calcium were low, but was stimulated when molybdenum was high. Lead, when applied to leaves at the rate of 50 p.p.m., caused moderate sucrose increases. Glucose-1-phosphate phosphatase was suppressed by lead in leaves and meristem, as was starch phosphorylase in the leaves. Foliar starch application failed to stimulate amylase, while ß-glycerophosphate failed to inhibit starch phosphorylase or to induce greater phosphatase activity. A number of enzyme responses were obtained which do not happen in vitro, and known in vitro effects did not always appear when specific materials were applied to living plants. Trichloroacetic acid, in particular, appeared to stimulate rather than inhibit enzyme action in vivo. This and other consequences of applying enzyme-regulating materials are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document