scholarly journals Effects of Potassium Fertilization, Cultivar Specifics and Seedling Temperature Regime on Growth Parameters and Yield of Tomato (Solanum lycopersicum L.)

Author(s):  
V. Vasileva ◽  
N. Dinev ◽  
I. Mitova

Background: Potassium fertilization shows beneficial effect on formation of tomato vegetative biomass and productivity. The purpose of this study was to determine the extent to which split potassium application and seedling temperature regime affects the growth parameters (leaf number, leaf area, fresh leaf weight and LAI) and yield of various tomato cultivars. Methods: A pot experiment was conducted to investigate the impact of single dose and split potassium fertilization treatments, cultivar specifics and seedling temperature regime on growth parameters and yield of tomato. Ten high yielding classic round shape tomato cultivars with determinate growth habitat were planted on Fluvisol. Single and split potassium fertilization treatments were tested. Result: The seedlings growth temperature regime and splitting the potassium fertilization treatment did not have a significant effect on the development of leaf biomass in tomato plants. Results revealed that leaf number, leaf area, fresh leaf weight and LAI of tomato plants was significantly affected by the cultivar genetic factor. Tomato yield were significantly affected by cultivars and split potassium fertilization treatments. Cultivars that measured the highest leaf area, fresh leaf weight and LAI and were also the highest yielding ones. A positive correlation between LAI and tomato fruit yield was observed.

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1158 ◽  
Author(s):  
Carlo Greco ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giulia La Placa ◽  
Michele Massimo Mammano ◽  
...  

The aim of this work is to assess the usefulness of biowaste deriving from Circular Bioeconomy (CBE) processes (i.e., vermicompost, compost and digestate), as growing substrates for the partial or total replacement of peat, by measuring the vegetation biometric parameters of sage (Salvia officinalis L.)—leaf area; Soil Plant Analysis Development (SPAD) value (index of chlorophyll concentration); fresh and dry weight of leaves; stem weight; root length. The results showed that vermicompost positively influenced most of above parameters (+16.7% for leaf area, +7.3% for fresh leaf weight, +6.4% for dry leaf weight, +8.5% for fresh stem weight, +0.9% for dry stem weight, +16% for root length) and, therefore, can be used as a sustainable growing substrate, alternative to peat, for the sage soilless cultivation. Yet, the results of some biometric parameters are better with peat rather than with compost (−7.2% for SPAD value, −47.3% for fresh leaf weight, −46.8% for dry leaf weight, −32.9% for fresh stem weight, −39.1% for dry stem weight, −52.4% for fresh root weight, −56.6% for dry root weight) and digestate (−30.2% for fresh leaf weight, −33.6% for dry leaf weight, −23.9% for fresh stem weight, −27% for dry stem weight, −51.8% for fresh root weight, −34.4% for dry root weight, −16% for root length). Therefore, these results are interesting for potted plants in nursery activity, while the above differences must be verified also after the transplanting of the tested plants in open field. However, the use of all the above growing substrates alternative to peat allows the sustainable valorization of food industry by-products, plant biomass, animal manure and the Organic Fraction of Municipal Solid Waste (OFMSW).


2000 ◽  
Vol 27 (6) ◽  
pp. 595 ◽  
Author(s):  
Hendrik Poorter ◽  
Oscar Nagel

The allocation of biomass to different plant organs depends on species, ontogeny and on the environment experienced by the plant. In this paper we first discuss some methodological tools to describe and analyse the allocation of biomass. Rather than the use of shoot:root ratios, we plead strongly for a subdivision of biomass into at least three compartments: leaves, stems and roots. Attention is drawn to some of the disadvantages of allometry as a tool to correct for size differences between plants. Second, we tested the extent to which biomass allocation of plants follows the model of a ‘functional equilibrium’. According to this model, plants respond to a decrease in above-ground resources with increased allocation to shoots (leaves), whereas they respond to a decrease in below-ground resources with increased allocation to roots. We carried out a meta-analysis of the literature, analysing the effect of various environmental variables on the fraction of total plant biomass allocated to leaves (leaf mass fraction), stem (stem mass fraction) and roots (root mass fraction). The responses to light, nutrients and water agreed with the (qualitative) prediction of the ‘functional equilibrium’ theory. The notable exception was atmospheric CO2, which did not affect allocation when the concentration was doubled. Third, we analysed the quantitative importance of the changes in allocation compared to changes in other growth parameters, such as unit leaf rate (the net difference between carbon gain and carbon losses per unit time and leaf area), and specific leaf area (leaf area: leaf biomass). The effects of light, CO2 and water on leaf mass fractions were small compared to their effects on relative growth rate. The effects of nutrients, however, were large, suggesting that only in the case of nutrients, biomass allocation is a major factor in the response of plants to limiting resource supply.


1982 ◽  
Vol 12 (2) ◽  
pp. 420-424 ◽  
Author(s):  
K. F. Jensen

Silver maple (Acersaccharinum L.) and eastern cottonwood (Populusdeltoides Bartr.) seedlings were treated with either 0.0, 0.1, 0.2, or 0.3 ppm ozone for 12 h/day for up to 60 consecutive days. Six seedlings were harvested from each treatment at 10-day intervals to construct growth curves for leaf area, leaf weight, and stem plus leaf weight. Relative growth parameters were calculated from these curves. Relative growth rate, relative leaf-area growth rate, and relative leaf-weight growth rate declined with an increase in time and ozone concentration. Net assimilation rate declined with time in both species. Specific leaf area and leaf-area ratio had no consistent trends.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1074c-1074
Author(s):  
Richard J. McAvoy

Poinsettias, Euphorbia pulcherrima Willd. cvs Lilo and Diva Starlight, were exposed to either warm day-cool night or cool day-warm night greenhouse temperature regimes. Day time temperatures were imposed between 900 to 1600 HR. Within each temperature regime, poinsettias were grown single stem or pinched and drenched with either 0.04 or 0.08 mg a.i. uniconazole per 1.6 1 pot or grown as untreated controls. Light levels (PAR) and potting medium and plant canopy temperatures were continuously monitored.Over the course of the study, the day-night temperature differential (DIF), in the plant canopy, averaged 4.2C in the warm day regime and -1.4C in the cool day regime. The average daily temperature was lower (16.9C) in the warm day regime than in the cool day regime (18.7C).DIF treatment significantly affected final leaf area, leaf and total plant dry weight, leaf area ratio and specific leaf weight, The DIF treatment by cultivar interaction was significant for final poinsettia leaf area, stem, leaf and total plant dry weight, break number and average break length. Uniconazole significantly affected final plant height, stem and total plant dry weight, break number, average break length and specific leaf weight. Uniconazole by DIF treatment effects were not significant,


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 479D-479
Author(s):  
Jianjun Chen ◽  
Dennis B. McConnell ◽  
Svoboda V. Pennisi ◽  
Cynthia A. Robinson ◽  
Russell D. Caldwell

Tissue culture plugs of Aglaonema `Cory', `Maria', and `Silver Queen' and Dieffenbachia `Panther', `Snowflake', and `Sport Lynn' were potted singly in 15-cm pots and grown in a shaded greenhouse under a photosynthetic irradiance (PI) of 100 mmol·m–2·s–1. Eight months after potting, 27 plants of each cultivar were placed in nine interior evaluation rooms under three different PI levels (three rooms per level): 4, 8, and 16 mmol·m–2·s–1. In addition, three plants of each cultivar were maintained in the original greenhouse for the duration of the experiment. Number of leaves, plant height and width were monitored monthly. Recently matured leaves were removed at 3-month intervals for 9 months for determination of fresh and dry weight, leaf area, and percentage leaf variegation. Variegated leaf area was assessed using digitized leaf images. Interior PI levels affected growth parameters, but the degree of response was cultivar-dependent. Smallest leaves developed on plants grown under 4 mmol·m–2·s–1 and largest leaves developed under 16 mmol·m–2·s–1. Leaf area of Dieffenbachia `Sport Lynn' showed the greatest response and Aglaonema `Maria' the least response to PI levels. Percentage leaf variegation of Dieffenbachia `Snowflake' was least affected and Dieffenbachia `Sport Lynn' was most affected by PI levels. Fresh leaf weight of unit area decreased as PI levels decreased from 16 to 4 mmol·m–2·s–1, however, the decrease in unit area was most pronounced in cultivars that maintained the highest quality ratings. Based on the results of this study, Aglaonema `Maria' and Dieffenbachia `Snowflake' had the most satisfactory interior performance within their respective genera.


2000 ◽  
Vol 27 (12) ◽  
pp. 1191 ◽  
Author(s):  
Hendrik Poorter ◽  
Oscar Nagel

The allocation of biomass to different plant organs depends on species, ontogeny and on the environment experienced by the plant. In this paper we first discuss some methodological tools to describe and analyse the allocation of biomass. Rather than the use of shoot:root ratios, we plead strongly for a subdivision of biomass into at least three compartments: leaves, stems and roots. Attention is drawn to some of the disadvantages of allometry as a tool to correct for size differences between plants. Second, we tested the extent to which biomass allocation of plants follows the model of a ‘functional equilibrium’. According to this model, plants respond to a decrease in above-ground resources with increased allocation to shoots (leaves), whereas they respond to a decrease in below-ground resources with increased allocation to roots. We carried out a meta-analysis of the literature, analysing the effect of various environmental variables on the fraction of total plant biomass allocated to leaves (leaf mass fraction), stem (stem mass fraction) and roots (root mass fraction). The responses to light, nutrients and water agreed with the (qualitative) prediction of the ‘functional equilibrium’ theory. The notable exception was atmospheric CO2, which did not affect allocation when the concentration was doubled. Third, we analysed the quantitative importance of the changes in allocation compared to changes in other growth parameters, such as unit leaf rate (the net difference between carbon gain and carbon losses per unit time and leaf area), and specific leaf area (leaf area: leaf biomass). The effects of light, CO2 and water on leaf mass fractions were small compared to their effects on relative growth rate. The effects of nutrients, however, were large, suggesting that only in the case of nutrients, biomass allocation is a major factor in the response of plants to limiting resource supply.


1983 ◽  
Vol 10 (1) ◽  
pp. 25 ◽  
Author(s):  
HM Rawson ◽  
JH Hindmarsh

Two sunflower hybrids, Hysun 31 and Suncross 150, were grown in the field with adequate irrigation and given three light treatments throughout their life cycle. The treatments were 100, 50 and 20% sun (high, medium and low light); during the vegetative period the high light treatment averaged more than 20 MJ m-2 day-1 total short-wave radiation. The two cultivars, although differing in many of the leaf and plant growth parameters measured, followed the same trends with respect to light. A reduction from 100 to 50% light delayed the appearance of leaves slightly but had no effect on patterns of leaf-area expansion such as the rate and duration of expansion of individual leaves and the distribution of leaf area among nodes. A further reduction in light, however, significantly reduced the size of all leaves through effects on the rates at which leaves expanded. There was no effect of light level on the period for which leaves expanded. Whilst leaf expansion remained unaffected by a reduction from high to medium light, specific leaf weight was significantly reduced to 76% of control levels. The lowest light regime further reduced specific leaf weight to only 59% of control levels. Total plant weights declined to 89% (not significant) at the medium light level and significantly to 47% at the low level and as harvest index was marginally, though not significantly, decreased by a reduction in light, these values translated into significant reductions in seed production (86 and 44% of controls).


Author(s):  
F Haque ◽  
KN Nishi ◽  
M Muslim ◽  
MK Rahman

Effects of organic manures and NPK fertilizers on okra (Abelmoschus esculentus L. Moench) plants were evaluated in the net house of the Department of Soil, Water and Environment, University of Dhaka. The experiment was conducted in a randomized design replicated thrice with eighteen treatments involving eight organic manures along with NPK and without NPK fertilizers. Growth parameters viz. plant height, leaf number, leaf area and dry weight of root, stem, leaf and fruits were assessed. The highest height (132.5 cm), leaf number (21.5) and leaf area (412.09 cm2) were found in T9: Shebok 10 ton ha–1 treatment. The highest dry weight of a plant (40.6 g), number of fruits per plant (8) and dry weight of fruit per plant (3.71 g) were found in T11:N30P18K25 kg ha–1 plus ACI 5 ton ha–1 treatment. Maximum protein (25.37%) was achieved in T11, phosphorous (0.481 mg kg–1) in T14 and potassium (4.50 mg kg–1) in T13 treatment. Results varied significantly (p≤0.5). The overall best growth performance and protein content was observed in T9:Shebok 10 ton ha–1 and T11:N30P18K25 kg ha–1 plus ACI 5 ton ha–1 treatment, respectively. J. Biodivers. Conserv. Bioresour. Manag. 2020, 6(2): 83-88


1970 ◽  
Vol 36 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Sebahattin Albayrak ◽  
Necdet Çamas

Changes in plant growth viz. leaf area, leaf weight ratio, root weight ratio, dry leaf weight, dry root weight, total plant dry weight, specific leaf area, leaf thickness, leaf area ratio, net assimilation rate and relative growth rate due to the effects of environmental conditions such as temperature and light intensity were described by plant growth models. All equations produced for growth parameters were affected by light intensity and temperature. From multi-regression analysis, close relationships were found between actual and predicted growth parameters. The regression coefficients (r²) of the equations for growth parameters varied from 0.95 to 0.99 for cultivar Ecdogelb and 0.83 to 0.99 for cultivar Ecdorot, respectively.  


2021 ◽  
Vol 22 (4) ◽  
pp. 419-428
Author(s):  
MUNISH KAUNDAL ◽  
RAKESH KUMAR

Valeriana jatamansi is an important medicinal and aromatic plant used as sedative in modern  and traditional medicines butthere is dearth of literature regarding how elevated CO2 and temperature affect on this plant. Therefore,an experiment was conducted to study the effect of elevated CO2 (550±50 µmol mol-1) and elevated temperature (2.5±0.5°C above ambient) and vermicompost on growth, phenology and biomass accumulation in V. jatamansi under Free Air CO2 Enrichment (FACE) and Free Air TemperatureIncrement (FATI) facilities at Palampur, India, during 2013-2015. Growth parameters and biomass accumulation into different parts were observed at 4, 12 and 16 months after exposure (MAE). Plant height, total dry biomass and leaf area plant -1 increased in elevated CO2 treatment applied with vermicompost as compared to the other treatments. Elevated CO2 significantly enhanced leaf area (3.5-23.5%), leaf biomass (12.7-33.2%), stem (15.3-15.6%), root (3.2-72.5%), rhizome (2.1-42.2%) and total biomass (7.7-52.7%), whereas elevated temperature increased aboveground biomass (15.0-45.3%), belowground biomass (11.6-55.5%) and total biomass (12.4-7.9%), respectively, as compared to ambient. Phenological stages were advanced by 1.2-3.9 days under FACE and FATI as compared to ambient. The results indicate that aboveground, belowground and total biomass increased under elevated CO2 and elevated temperature as compared to ambient. 


Sign in / Sign up

Export Citation Format

Share Document