Impacts of Rhizobium Strain Ar02 on the Nodulation, Growth, Nitrogen (N2) Fixation Rate and ion Accumulation in Phaseolus vulgaris L. under Salt Stress

Author(s):  
Saoussen Kouki ◽  
Boulbaba L’taief ◽  
Rahamh N. Al-Qthanin ◽  
Bouaziz Sifi

Background: Phaseolus vulgaris L. -rhizobia symbiosis has effectively enhanced common bean productivity via multiple biological mechanisms. This study aims to assess the impacts of the strain of Rhizobium on the nodulation, growth, nitrogen (N2) fixation rate and ion accumulation within Phaseolus vulgaris L. under salt stress. Methods: The Coco Blanc cultivar of the common bean was inoculated with the Ar02 rhizobia strain at 15 days after germination. Bean plants were inoculated in perlite culture to which salt was added in concentrations of 0, 25, 50 and 75 mmol L-1 NaCl. Result: Inoculation with the Ar02 rhizobia strain led to infective and effective symbiosis with the common bean plants exposed to saline solutions and non-saline solutions, respectively. Nodule biomass and nitrogen content declined under salt stress but maintained a higher number of nodules and nodule biomass at 75 mM NaCl. Plant root and shoot length increased with higher biomass under saline conditions, significantly more than the non-inoculated plant without salt. However, the progressive addition of NaCl reduced the growth of the root and shoot and the biomass within the inoculated plant. Salinity led to increased Na+ within the plant’s shoot, along with a reduction in Ca+2 and K+ concentrations. The shoot’s Ca+2, Na+ and K+ content were higher in the inoculated plant than the non-inoculated. The salt tolerance in common bean plants inoculated with Ar02 rhizobia was linked with the plant’s capability to sustain nodulation and enhance Na+ concentration in the shoot. Furthermore, salt tolerance within the same variety inoculated with Rhizobium was linked to a decline in the Ca+ and K+ concentrations in the shoot region of salt-exposed plants.

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 409
Author(s):  
Yu ◽  
Yu ◽  
Hou ◽  
Zhang ◽  
Guo ◽  
...  

The common bean (Phaseolus vulgaris L.), the most important food legume for human nutrition globally, contributes greatly to the improvement of soil fertility in semi-dry lands where most of the soil is already salinized or alkalized, such as in the Songnen Plain of China. In this study, we investigated the effects of salt stress (neutral and alkaline) on the salt-tolerant common bean. Seed germination, seedling growth, photosynthesis, and osmotic adjustment were assessed. Neutral and alkaline salt growth environments were simulated using NaCl and NaHCO3, respectively. The results indicated that at ≥60 mmol·L−1, both NaCl and NaHCO3 caused significant delays in seedling emergence and decreased seedling emergence rates. NaHCO3 stress suppressed seedling survival regardless of concentration; however, only NaCl concentrations >60 mmol·L−1 had the same effect. Alkaline salt stress remarkably suppressed photosynthesis and seedling establishment. The common bean compensated for the increase in inorganic anion concentration (influx of Na+) by synthesizing more organic acids and soluble sugars. This adaptive mechanism enabled the common bean to balance the large inflow of cations for maintaining a stable cell pH environment under alkaline salt stress.


2017 ◽  
Vol 47 (11) ◽  
Author(s):  
Isley Cristiellem Bicalho da Silva ◽  
Luiz Arnaldo Fernandes ◽  
Fernando Colen ◽  
Regynaldo Arruda Sampaio

ABSTRACT: Production of biochar from organic wastes promises to be an interesting source of plant nutrients, thus reducing pressure on natural resources. To assess the effect of biochar prepared from wastes filtration materials on the growth and production of common bean (Phaseolus vulgaris L.), three simultaneous greenhouse experiments were conducted with three different biochar from organic wastes (rice husk, sawdust, and sorghum silage) using as filtration material for swine biofertilizer. In each experiment the treatments consisted of the addition of five different biochar concentrations (0%, 2.5%, 5%, 7.5%, and 10% v/v), arranged in a completely random design, with four repetitions. Application of biochar increased the root dry mass, shoot dry mass, grain dry mass, number of pods and number of grains. These results indicated that biochar contributed significantly to the growth and production of common bean plants.


2020 ◽  
Vol 120 (2) ◽  
pp. 49
Author(s):  
Aaron Ziegler

The energy efficiency of light-emitting diodes (LEDs) makes them attractive for indoor plant lighting. LEDs, however, do not produce broad-spectrum light efficiently. The effects of LED lighting on common bean (Phaseolus vulgaris L.) growth are not well known. This study sought to find the colors of light that most effectively grow common bean plants under indoor conditions. The hypothesis was that red light would promote early common bean growth better, both qualitatively and quantitatively, than violet or green light. After planting the seeds in soil, 20 common bean plants were each grown under red, or green, or violet LED lights (PHILIPS®) (8 watt), or natural sunlight, for 16 days: a total of 80 plants. Bonferroni adjusted t-tests showed that the plants under the violet light grew significantly taller than the plants under red or green light with p-values 0.000 respectively; the plants under red or green light had significantly larger leaves than those under the violet light with p-values 0.000. Qualitative observations (based upon visual inspections of leaf health, maturity, and root development) revealed the plants under red light were the healthiest, most mature, and exhibited the most developed roots—followed by those under green light. The findings of this study suggested early common bean growth performed better under red light than under violet or green light.


2003 ◽  
Vol 49 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Elizabete HELBIG ◽  
Admar Costa de OLIVEIRA ◽  
Keila da Silva QUEIROZ ◽  
Soely Maria Pissini Machado REIS

2016 ◽  
Vol 7 ◽  
Author(s):  
Keren Martínez-Aguilar ◽  
Gabriela Ramírez-Carrasco ◽  
José Luis Hernández-Chávez ◽  
Aarón Barraza ◽  
Raúl Alvarez-Venegas

Sign in / Sign up

Export Citation Format

Share Document