scholarly journals The use of plant bioactive compounds to reduce greenhouse gas emissions from farmed ruminants

Author(s):  
Cécile Martin ◽  
◽  
Vincent Niderkorn ◽  
Gaëlle Maxin ◽  
Jessie Guyader ◽  
...  

This chapter focuses on the opportunity to use plant bioactive compounds in ruminant diets for their potential to mitigate greenhouse gas emissions, particularly enteric methane. Nitrous oxide emissions related to urinary nitrogen waste are addressed when information is available. The main families considered are plant lipids and plant secondary compounds (tannins, saponins, halogenated compounds and essential oils). The effects of these compounds in vivo, their mechanisms of action, and their potential adoption on farms are discussed, and future trends in this research area are highlighted.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2013 ◽  
Vol 67 (6) ◽  
pp. 1370-1379 ◽  
Author(s):  
J. Liebetrau ◽  
T. Reinelt ◽  
J. Clemens ◽  
C. Hafermann ◽  
J. Friehe ◽  
...  

With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.


2019 ◽  
Vol 3 (4) ◽  
pp. 1383-1388 ◽  
Author(s):  
Breanna M Roque ◽  
Henk J Van Lingen ◽  
Hilde Vrancken ◽  
Ermias Kebreab

Abstract: Enteric methane (CH4) production is the main source of greenhouse gas emissions from livestock globally with beef cattle contributing 5.95% of total global greenhouse gas emissions. Various mitigation strategies have been developed to reduce enteric emissions with limited success. In vitro studies have shown a reduction in CH4 emissions when using garlic and citrus extracts. However, there is paucity of data regarding in vivo studies investigating the effect of garlic and citrus extracts in cattle. The objective of this study was to quantitatively evaluate the response of Angus × Hereford cross steers consuming the feed additive Mootral, which contains extracts of both garlic and citrus, on CH4 yield (g/kg dry matter intake [DMI]). Twenty steers were randomly assigned to two treatments: control (no additive) and Mootral supplied at 15 g/d in a completely randomized design with a 2-wk covariate and a 12-wk data collection periods. Enteric CH4 emissions were measured using the GreenFeed system during the covariate period and experimental weeks 2, 6, 9, and 12. CH4 yield (g/kg DMI) by steers remained similar in both treatments for weeks 2 to 9. In week 12, there was a significant decrease in CH4 yield (23.2%) in treatment compared to control steers mainly because the steers were consuming all the pellets containing the additive. However, overall CH4 yield (g/kg DMI) during the entire experimental period was not significantly different. Carbon dioxide yield (g/kg DMI) and oxygen consumption (g/kg DMI) did not differ between treatments during the entire experimental period. DMI, average daily gain, and feed efficiency also remained similar in control and supplemented steers. The in vivo results showed that Mootral may have a potential to be used as a feed additive to reduce enteric CH4 production and yield in beef cattle but needs further investigation under various dietary regimen.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


2014 ◽  
Vol 05 (02) ◽  
pp. 1450002 ◽  
Author(s):  
JOHN HOROWITZ

Agriculture is a source of greenhouse gas emissions that could be included as offsets in a cap-and-trade system. This paper describes offset rules that could be applied to reduced nitrogen fertilizer application on wheat, a source of nitrous oxide emissions. Unlike other papers that have examined offset rules, we do not assume that farmers' business-as-usual nitrogen emissions can be perfectly predicted. We construct a structural model of wheat production and use this, along with Agricultural Resource Management Survey data, to model or estimate participation in the offset market, offset supply conditional on participation, and business-as-usual emissions. We find that roughly two-thirds of the supplied offsets would be non-additional at an allowance price of $15/tonne CO 2-e. Under assumptions about the social damages from greenhouse gas emissions, we find that allowing nitrogen offsets would marginally pass a standard benefit-cost test.


2017 ◽  
Vol 13 (1) ◽  
pp. 39-49
Author(s):  
Paweł Wiśniewski ◽  
Mariusz Kistowski

Abstract Nitrous oxide (N2O) is one of the main greenhouse gases, with a nearly 300 times greater potential to produce a greenhouse effect than carbon dioxide (CO2). Almost 80% of the annual emissions of this gas in Poland come from agriculture, and its main source is the use of agricultural soils. The study attempted to estimate the N2O emission from agricultural soils and to indicate its share in the total greenhouse gas emissions in 48 Polish communes. For this purpose, a simplified solution has been proposed which can be successfully applied by local government areas in order to assess nitrous oxide emissions, as well as to monitor the impact of actions undertaken to limit them. The estimated emission was compared with the results of the baseline greenhouse gas inventory prepared for the needs of the low-carbon economy plans adopted by the studied self-governments. This allowed us to determine the share of N2O emissions from agricultural soils in the total greenhouse gas emissions of the studied communes. The annual N2O emissions from agricultural soils in the studied communes range from 1.21 Mg N2O-N to 93.28 Mg N2O-N, and the cultivation of organic soils is its main source. The use of mineral and natural fertilisers, as well as indirect emissions from nitrogen leaching into groundwater and surface waters, are also significant. The results confirm the need to include greenhouse gas emissions from the use of agricultural soils and other agricultural sources in low-carbon economy plans.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4904
Author(s):  
Zofia Koloszko-Chomentowska ◽  
Leszek Sieczko ◽  
Roman Trochimczuk

The negative impact of agricultural production on the environment is manifested, above all, in the emission of greenhouse gases (GHG). The goals of this study were to estimate methane and nitrous oxide emissions at the level of individual farms and indicate differences in emissions depending on the type of production, and to investigate dependencies between greenhouse gas emissions and economic indicators. Methane and nitrous oxide emissions were estimated at three types of farms in Poland, based on FADN data: field crops, milk, and mixed. Data were from 2004–2018. Statistical analysis confirmed the relationship between greenhouse gas emissions and economic performance. On milk farms, the value of methane and nitrous oxide emissions increased with increased net value added and farm income. Milk farms reached the highest land productivity and the highest level of income per 1 ha of farmland. On field crops farms, the relationship between net value added and farm income and methane and nitrous oxide emissions was negative. Animals remain a strong determinant of methane and nitrous oxide emissions, and the emissions at milk farms were the highest. On mixed farms, emissions result from intensive livestock and crop production. In farms of the field crops type, emissions were the lowest and mainly concerned crops.


2011 ◽  
Vol 51 (1) ◽  
pp. 60 ◽  
Author(s):  
J. A. Sise ◽  
J. I. Kerslake ◽  
M. J. Oliver ◽  
S. Glennie ◽  
D. Butler ◽  
...  

A software model has been developed to estimate greenhouse gas emissions of pasture-fed ruminant farming systems. The model estimates on-farm emissions associated with livestock (sheep and beef), fertiliser, petrol, diesel and electricity. Carbon sequestration from native and exotic forestry is then included to produce an on-farm carbon footprint, in the form of carbon dioxide equivalents. This paper describes the livestock model, which has been designed to record the movement of animals within individual farm units according to defined livestock classes. Allowances are made for unrecorded deaths, by estimating the number of animals missing within a defined time period and spreading the deaths according to expected seasonal variation in mortality. The enteric methane and nitrous oxide emissions are predicted using a combination of customised growth and lactation curves, and internationally recognised formulae to predict nutrient energy requirements. Customised growth and lactation curves allow estimation of liveweights and energy requirements associated with maintenance, growth, pregnancy and lactation on a daily basis. Daily estimation of emissions reduces errors introduced by monthly or seasonal averaging of livestock numbers and liveweights. The model has been developed into a commercial application (Alliance Group hoofprint) for use by New Zealand sheep and beef farmers, and could be adapted for other international livestock farming operations.


2018 ◽  
Vol 58 (6) ◽  
pp. 1087 ◽  
Author(s):  
G. N. Ward ◽  
K. B. Kelly ◽  
J. W. Hollier

Nitrous oxide (N2O) from excreta deposited by grazing ruminants is a major source of greenhouse gas emissions in Australia. Experiments to measure N2O emissions from dairy cow dung, urine and pond sludge applied to pasture, and the effectiveness of the nitrification inhibitor nitrapyrin in reducing these emissions, were conducted in south-western Victoria, Australia. In Experiment 1, emissions from urine, with and without nitrapyrin, and from dung were measured. Treatments applied in September 2013 resulted in cumulative emissions (245 days) of 0.60, 5.35, 4.15 and 1.02 kg N2O-nitrogen (N)/ha for the nil, urine (1000 kg N/ha), urine (1000 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (448 kg N/ha) treatments, respectively, giving emission factors of 0.47% and 0.09% for urine and dung respectively. Nitrapyrin reduced N2O emissions from urine for 35 days, with an overall reduction in emissions of 25%. In Experiment 2, sludge, with and without nitrapyrin, was applied in May 2014, and dung was applied in May, August, November 2014 and January 2015. Cumulative emissions (350 days) were 0.19, 0.49, 0.31 and 0.39 kg N2O-N/ha for the nil, sludge (308 kg N/ha), sludge (308 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (total 604 kg N/ha) treatments, respectively, giving emission factors of 0.10% and 0.03% for sludge and dung. Nitrapyrin reduced N2O emissions from sludge for 60 days, with an overall reduction in emissions of 59%. A third experiment on two soil types compared emissions from urine and dung, with and without nitrapyrin, applied in different seasons of the year. Emissions were highly seasonal and strongly related to soil water status. Emission factors (90 days) ranged from 0.02% to 0.19% for urine and 0.01% to 0.12% for dung. Nitrapyrin reduced emissions from urine by 0–35% and had little effect on emissions from dung. Overall, the experiments found that nitrapyrin was an effective tool in reducing emissions from urine, dung and sludge applied to pasture, but the magnitude varied across the year, with nitrapyrin being most effective when soils had >70% water-filled pore space when major emissions occurred.


Author(s):  
Koloman Krištof ◽  
Tomáš Šima ◽  
Ladislav Nozdrovický ◽  
Ján Jobbágy ◽  
Jan Mareček ◽  
...  

Fertilizers are an important tool to maintain soil fertility and as an enhancement for the efficient crop production. The system of fertilizers application affects the final dose and commonly causes local overdosing or insuficient spatial distribution of fertilizers which are a very important source of nitrous oxide emissions (N2O) from the soil into the atmospher observation of such phenomenon are among the key factors defining environmental impacts of agriculture. A study was conducted to observe the effect of application dose of fertilizer on N2O emission from the soil. CAN (Calcium ammonium nitrate – consist of 27 % nitrogen) was spread by a fertiliser spreader Kuhn Axera 1102 H-EMC aggregated with a tractor John Deere 6150 M. Incorporation of fertilizer into the soil was done by power harrow Pöttinger Lion 302. The application dose was set at 0, 100, 200 and 300 kg.ha–1 while monitoring points were selected at the base of this application doses in respective places. Measurements were conducted at time intervals 7, 14, 21 and 28 days after fertiliser application and following incorporation. Nitrous oxide emissions were measured by field gas monitor set INNOVA consisting of a photoacoustic gas monitor INNOVA 1412 and a multipoint sampler INNOVA 1309. Statistically significant differences was found among time intervals and among the application dose (p > 0.05). It was observed that the application dose of selected fertilizers has the direct effect on nitrous oxide (N2O) emissions released from soil into the atmosphere. An increase of greenhouse gas emissions was observed in range from 0.83 to 152.33 %. It can be concluded that the local overdose of fertilizers negatively affects environmental impact of agricultural practices at greenhouse gas emissions (GHGs).


Sign in / Sign up

Export Citation Format

Share Document