scholarly journals Phytochemical Screening, Spectrum Profile of Functional Groups, and Effervescent Formulation of Kepok Banana Peels Stem Extract

2021 ◽  
Vol 4 (2) ◽  
pp. 66-72
Author(s):  
Robby Candra Purnama ◽  
Annisa Primadiamanti

Kepok banana plants contain secondary metabolites such as tannins and flavonoids. Tannins and flavonoids have various properties for human health. Research has been carried out to identify secondary metabolite compounds (tannins, flavonoids, and saponins) by using the phytochemical screening method to see the functional group profile contained in the extract of kepok banana stem waste. Kepok banana stem waste was extracted in 96% ethanol, then evaporated and screened phytochemically. This extract was used to prepare effervescently. Screening results showed that tannin and flavonoids were identified by the appearance of the following color black-green and dark red, respectively. Meanwhile, saponins were negative because the foam formed had a height of 0.3 cm and did not meet the saponins' positive requirements (1-3 cm high foam and stable for 5 minutes). Identification of functional groups in the extract of kepok banana stem waste using Fourier-transform Infrared Spectroscopy (FTIR) showed that C-C stretching in the area 2927.24 cm-1, O-H stretching in the 3423.87 cm-1 area, C=O stretching in the 1648.87 cm-1 area. Also appeared bending CH2 in the region of 1421.45 cm-1, and C-C in the area of 1149.98 cm-1. The characteristics of three different formulas (A, B, and C) of effervescent have been investigated: the moisture content of 2.51%; 2.55%, and 2.52%, respectively. Then, flow rate of 8.81 g/s; 8.83 g/s; and 8.82 g/s, compressibility of 14.5%; 14.4%; and 14.5%, and a pH of 5.97; 5.98; and 5.97 respectively. All parameters are eligible.

1980 ◽  
Vol 34 (1) ◽  
pp. 7-14 ◽  
Author(s):  
R. C. Wieboldt ◽  
B. A. Hohne ◽  
T. L. Isenhour

A method is presented for the direct analysis of interferometric data from gas chromatography Fourier transform infrared spectroscopy (GC/FTIR). A synthetic interferogram is initially produced which represents the characteristic absorption features of a particular functional group or compound class. A zero displacement correlation is performed between this test interferogram and each sample interferogram from the GC data. The presence of the desired functionality in the GC effluent is indicated by a small value of the resulting cumulative sum. A “correlogram” which emulates the response from a chemically specific GC detector is obtained by plotting the cumulative sum from each sample correlation. Synthetic interferograms representing infrared absorption bands which are truly specific for a particular functionality yield the best results.


2020 ◽  
Vol 4 (2) ◽  
pp. 96
Author(s):  
Claudia Candra Setyaningrum ◽  
Kholisoh Hayati ◽  
Siti Fatimah

Limbah nata de coco merupakan nata yang tidak dapat dijadikan sebagai produk setelah proses sortasi sehingga menghasilkan limbah padat dan jarang dimanfaatkan. Kandungan selulosa pada limbah padat nata de coco sebesar 42,57%. Tujuan penelitian ini membuat plastik biodegradable dengan hasil limbah nata de coco dengan penambahan plasticizer. Metode yang digunakan pada pembuatan plastik biodegradable ini adalah metode inversi fasa dengan variasi berat selulosa 2%; 2,5%; dan 3% (b/v), variasi volume gliserol sebesar 2%, 3%, dan 5% (v/v), dan penambahan kitosan sebagai penguat. Karakteristik pastik biodegradable diuji menggunakan UTM (Universal Testing Machine) dan FTIR (Fourier-Transform Infrared Spectroscopy). Plastik biodegradable yang dihasilkan dari berbagai perbandingan berat selulosa dan volume gliserol memiliki karakteristik yang berbeda-beda. Plastik biodegradable dengan karakteristik optimal memiliki nilai kuat tarik optimal sebesar 4,34 MPa, nilai elongasi optimal sebesar 4,44% dan nilai ketahanan air optimal sebesar 65,20%. Pada analisis gugus fungsi menggunakan FTIR menunjukkan tidak ditemukan adanya gugus fungsi baru dalam plastik biodegradable selain gugus fungsi bahan pembentuknya. Pada uji biodegradabilitas, diperoleh nilai biodegradabilitas sebesar 80% – 100% setelah ditimbun di dalam tanah selama 14 hari.Nata de coco waste is nata that cannot be used as a product after the sorting process so that it produces solid waste and is rarely utilized. The cellulose content in nata de coco solid waste is 42.57%, the purpose of this study is to make biodegradable plastic with the results of nata de coco waste by adding plasticizers. The method used in the manufacture of biodegradable plastics is the phase inversion method with cellulose weight variation; 2%; 2.5%; and 3% (w / v), variations in the volume of glycerol by 2%, 3%, and 5% (v/v), and the addition of chitosan as an amplifier. The biodegradable plastic characteristics were tested using UTM (Universal Testing Machine) and FTIR (Fourier-Transform Infrared Spectroscopy). Biodegradable plastics that are produced from various weight cellulose and glycerol volume ratios have different characteristics. Biodegradable plastic with optimal characteristics has an optimal tensile strength value of 4.34 MPa, optimal elongation value of 4.44% and an optimal water resistance value of 65.20%. In the analysis of functional groups (FTIR) no new functional groups were found in biodegradable plastics in addition to the functional groups forming materials. In the biodegradability test, a biodegradability value of 80% - 100% is obtained after being buried in the ground for 14 days.


2020 ◽  
Vol 851 ◽  
pp. 9-15
Author(s):  
Ahmad Taufiq ◽  
M.Sofiyudin Nuroni ◽  
Nurul Hidayat ◽  
ST.Ulfawanti Intan Subadra ◽  
Sunaryono ◽  
...  

In this work, Fe3O4 nanoparticles (NPs) were synthesized using coprecipitation method and TiO2 NPs were synthesized using sonication method. Fe3O4/polyaniline and TiO2/polyaniline nanocomposites (NCs) were synthesized using polymerization methods. The samples were characterized by X-ray diffractometer, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results of X-ray diffraction data analysis presented that polyaniline decreased the crystallinity of Fe3O4 and TiO2 NPs. However, the crystal structure of Fe3O4 and TiO2 NPs did not change, which successively formed the cubic spinel and the tetragonal anatase phases. Furthermore, the functional groups of Ti-O-Ti and Fe-O were detected in the wavenumber ranges of 620-580 cm-1 and 410-520 cm-1, respectively. The presence of polyaniline was also detected by the emergence of a functional group of polyaniline which also showed that there was an interaction of Fe3O4 and TiO2 NPs with polyaniline. Meanwhile, the results of UV-Vis data analysis showed that the addition of polyaniline decreased the bandgap energy of Fe3O4 and TiO2 NPs significantly from 2.186 to 2.174 eV and from 3.374 to 3.320 eV, respectively.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3506 ◽  
Author(s):  
Ashiqur Rahman ◽  
Shishir Kumar ◽  
Adarsh Bafana ◽  
Julia Lin ◽  
Si Amar Dahoumane ◽  
...  

In the current study, extracellular polymeric substances (EPS) of Chlamydomonas reinhardtii and photon energy biosynthetically converted Ag+ to silver nanoparticles (AgNPs). The reaction mechanism began with the non-photon-dependent adsorption of Ag+ to EPS biomolecules. An electron from the EPS biomolecules was then donated to reduce Ag+ to Ag0, while a simultaneous release of H+ acidified the reaction mixture. The acidification of the media and production rate of AgNPs increased with increasing light intensity, indicating the light-dependent nature of the AgNP synthesis process. In addition, the extent of Ag+ disappearance from the aqueous phase and the AgNP production rate were both dependent on the quantity of EPS in the reaction mixture, indicating Ag+ adsorption to EPS as an important step in AgNP production. Following the reaction, stabilization of the NPs took place as a function of EPS concentration. The shifts in the intensities and positions of the functional groups, detected by Fourier-transform infrared spectroscopy (FTIR), indicated the potential functional groups in the EPS that reduced Ag+, capped Ag0, and produced stable AgNPs. Based on these findings, a hypothetic three-step, EPS-mediated biosynthesis mechanism, which includes a light-independent adsorption of Ag+, a light-dependent reduction of Ag+ to Ag0, and an EPS concentration-dependent stabilization of Ag0 to AgNPs, has been proposed.


2020 ◽  
Vol 981 ◽  
pp. 98-103
Author(s):  
Mona Alis Md. Yasser ◽  
Zaidi Embong ◽  
Erween Abdul Rahim ◽  
Amiril Sahab Abdullah Sani ◽  
Kamaruddin Kamdani

This study was conducted to investigate the efficiency of Minimum Quantity Lubrication (MQL) technique by using Modified Jatropha Oil (MJO) bio-based lubricant with the presence of 10% Ammonium Ionic Liquid (MJO+AIL10%) and 1% Phosphonium Ionic Liquid (MJO+PIL1%) additives respectively at various temperature of 200 °C, 300 °C and 400 °C heat treatment to determine the ability to exhibit corrosion and wear throughout the process. Fourier-Transform Infrared Spectroscopy (FTIR) analysis revealed prominent peaks of functional groups in these bio-lubricants; esters (C-O) and (C=O), alkanes (C-H), hydroxide (O-H), and nitrile groups deposited on the cutting tool surface. Initially, nitrile group is detected on cutting tool surface without lubricants at 2200 to 2300 absorption band reduced to lower intensity and most likely concealed by MJO+AIL10% compared to MJO+PIL1% where the nitrile group remains reflected in FTIR spectrum. In this work, it is proved that MJO+AIL10% has higher viscosity as compared to MJO+PIL1%. in the context of functional groups and supported the previous study on MJO+AIL10% as corrosion inhibitor.


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Wismaroh Sanniwati Saragih ◽  
EDISON Purba ◽  
Lisnawita LISNAWITA ◽  
MOHAMMAD BASYUNI

Abstract. Saragih WS, Purba E, Lisnawita, Basyuni M. 2021. The Fourier transform infrared spectroscopy from Diplazium esculentum and Rivina humilis analysis reveals necessary components in oil palm plantations of Ganoderma boninense control. Biodiversitas 22: 3645-3651. The Fourier transform infrared spectroscopy (FTIR) has been widely utilized for biological samples and biomolecular characterization. We aim to identify Ganoderma boninense through FTIR and obtain a functional group that can facilitate early basal stem rot detection. Here, positive control (KP) was not inoculated with G. boninense and negative control (KN) was inoculated with G. boninense. However, the treatment samples, Diplazium esculentum leaf extract, Rivina humilis leaf extract, and fungicide treatment, were not inoculated with G. boninense. The positive control oil-palm leaf samples exhibited spectral bands similar to those in the D. esculentum extract, R. humilis extract, and fungicide treatment. Strong bonds were observed at wavelengths 3379 cm-1, 2927 cm-1, 1639 cm-1, and 1056 cm-1. Others were moderate to weak, except the negative control samples with strong bonds at 2044 cm-1. This indicates amine N-H functional groups, alkane functional group C-H, functional group alkene C=C, C-O, functional group ester, and functional group isothiocyanate N=C=S (C4H5NS or CH2 = CHCH2N=C=S). The FTIR plot result denotes G. boninense through N=C=S Isothiocyanate functional group presence at 2140-1990 cm-1. This unique structure is only found in infected oil-palm leaf tissues of G. boninense. Our study suggests that FTIR spectroscopy is more beneficial than conventional methods in early detection of G. boninense infection in oil palm.


Sign in / Sign up

Export Citation Format

Share Document