scholarly journals Eksplorasi, isolasi dan identifikasi Jamur entomopatogen yang menginfeksi serangga hama

2020 ◽  
Vol 1 (2) ◽  
pp. 70
Author(s):  
Arsi Arsi ◽  
Yulia Pujiastuti ◽  
Suparman Surya Hadi Kusuma ◽  
Bambang Gunawan

ABSTRACT Entomopathogenic fungi are classified as a fungus that infects insect pests. Hyphae color that comes out of the insect's body depends on the type of entomopathogenic fungus that attacks it. The purpose of this research is to explore, isolate and identify entomopathogenic fungi that attack insect pests. Samples of dead insects were taken from vegetable crops in the highlands of Pagaralam City and the lowlands of Ogan Komering Ilir Regency. In addition, exploration is also carried out using insect bait methods. This method is carried out on soils taken from the highlands of the fencealam area and Pekanbaru area. Based on the results of entomopathogenic expolation in vegetable plants that infect insects in the field there are 2 types of fungi that attack the insect. Two types of entomapatogenic fungi were found to have characteristics, namely the first hyphal color is rather green which covers the entire body of the insect and the second is white hyphae. The fungus that attacks the insect, then isolated to the GYA media found two entomopathogenic fungi namely, Metarhizium sp. and Beauveria bassiana. Meanwhile, through insect bait using soil T. molitor larvae, one species of entomopathogenic fungus was found, namely Metarhizium sp. The most infected T. molitor larvae in the soil of origin of Pekanbaru in the 2nd and 4th weeks, namely, 21.90 and 29.33 tails.   . Keywords: Entomopathogenic Fungus, Insect Pest and Tenibrio molitor  

2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2013 ◽  
Vol 13 (1) ◽  
pp. 52-60
Author(s):  
Haperidah Nunilahwati ◽  
Siti Herlinda ◽  
Chandra Irsan ◽  
Yulia Pujiastuti ◽  
Khodijah Khodijah ◽  
...  

Efficacy test of liquid bio-insecticide of entomopathogenic fungi in control against Plutella xylostella in the laboratory.  The insect pest P. xylostella could reduce crop production of Brassicaceae. The aim of research was to test the efficacy liquid bio insecticide with active ingredient of Beauveria bassiana and Metarhizium anisopliae fungi to control P. xylostella. Bio-insecticide was applied by spraying  on mustard leaves infested with 50 individuals of third instar larvae of P. xylostella and a density of 1x106 conidia ml-1. Larval mortality was observed every 2 hours and LT50 of larvae was calculated. The study showed that the highest percentage of mortality found in Mt ES and Mt ES (cf) isolates was 99.6%, the lowest mortality at Mt NES isolate was 96.80%. LT50 and LT95 values   Bb ES were the lowest i.e. 2.04 days and 2.95 days. The highest LT50 and LT95 of Mt NES isolate were 2.24 days and 3.32 days. The liquid bio-insecticide of entomopathogenic fungus B. bassiana and M. anisopliae were effective to control the larvae of P. xylostella.


2020 ◽  
Vol 23 (2) ◽  
pp. 1-6
Author(s):  
Helben Ismat Mohammaed ◽  
Mohammed Saeed Mirza ◽  
Feyroz Ramadan Hassan

Beauveria bassiana is an important entomopathogenic fungus that used as a biocontrol agent of insect pests. Maintaining and preserving B. bassiana cultures is essential for the effective evaluation of its potential as microbial agent against insect pest, for biodiversity studies and also for exchange of fungal material between laboratories. In the present work we evaluated the suitability of four preservation materials based on gelatin and rice to maintain the viability of B. bassiana to be used as baits for insect’s control. The gelatin amended with sugar recorded the maximum viability after 70 days of storage as 98.3% compared to 63.3% on rice media. Effective control of 80% of the ants was observed after 10 days of feeding on gelatin amended with sugar and rice bait. The results demonstrated that treatment with formulations containing conidia of B. bassiana presents insecticidal activity against ant in addition of acting as preservation materials.


2017 ◽  
Vol 10 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Surendra K. Dara

Aims:Lettuce and broccoli are high value vegetable crops in California. The western flower thrips,Frankliniella occidentalison lettuce, and the cabbage aphid,Brevicoryne brassicaeand the green peach aphid,Myzus persicaeon broccoli are important insect pests that are frequently managed with chemical insecticides.Observation:Efficacy of various chemical insecticides and the entomopathogenic fungusBeauveria bassianawas evaluated against these pests in field studies in the Santa Maria area of California. Some insecticides varied in their efficacy againstF. occidentalisfrom year to year and against different aphid species.Conclusion:A new insecticide sulfoxaflor provided good control of aphids on broccoli.Beauveria bassianademonstrated a potential for broccoli and lettuce integrated pest management.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 665 ◽  
Author(s):  
Charalampos Filippou ◽  
Inmaculada Garrido-Jurado ◽  
Nicolai Meyling ◽  
Enrique Quesada-Moraga ◽  
Robert Coutts ◽  
...  

The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market due to environmental and health concerns. The aim of this work is to investigate the presence and diversity of mycoviruses in large panels of entomopathogenic fungi, mostly from Spain and Denmark. In total, 151 isolates belonging to the genera Beauveria, Metarhizium, Lecanicillium, Purpureocillium, Isaria, and Paecilomyces were screened for the presence of dsRNA elements and 12 Spanish B. bassiana isolates were found to harbor mycoviruses. All identified mycoviruses belong to three previously characterised species, the officially recognised Beauveria bassiana victorivirus 1 (BbVV-1) and the proposed Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1); individual B. bassiana isolates may harbor up to three of these mycoviruses. Notably, these mycovirus species are under distinct selection pressures, while recombination of viral genomes increases population diversity. Phylogenetic analysis of the RNA-dependent RNA polymerase gene sequences revealed that the current population structure in Spain is potentially a result of both vertical and horizontal mycovirus transmission. Finally, pathogenicity experiments using the Mediterranean fruit fly Ceratitis capitata showed no direct correlation between the presence of any particular mycovirus and the virulence of the B. bassiana isolates, but illustrated potentially interesting isolates that exhibit relatively high virulence, which will be used in more detailed virulence experimentation in the future.


2006 ◽  
Vol 73 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Yanhua Fan ◽  
Weiguo Fang ◽  
Shujuan Guo ◽  
Xiaoqiong Pei ◽  
Yongjun Zhang ◽  
...  

ABSTRACT Entomopathogenic fungi are currently being used for the control of several insect pests as alternatives or supplements to chemical insecticides. Improvements in virulence and speed of kill can be achieved by understanding the mechanisms of fungal pathogenesis and genetically modifying targeted genes, thus improving the commercial efficacy of these biocontrol agents. Entomopathogenic fungi, such as Beauveria bassiana, penetrate the insect cuticle utilizing a plethora of hydrolytic enzymes, including chitinases, which are important virulence factors. Two chitinases (Bbchit1 and Bbchit2) have previously been characterized in B. bassiana, neither of which possesses chitin-binding domains. Here we report the construction and characterization of several B. bassiana hybrid chitinases where the chitinase Bbchit1 was fused to chitin-binding domains derived from plant, bacterial, or insect sources. A hybrid chitinase containing the chitin-binding domain (BmChBD) from the silkworm Bombyx mori chitinase fused to Bbchit1 showed the greatest ability to bind to chitin compared to other hybrid chitinases. This hybrid chitinase gene (Bbchit1-BmChBD) was then placed under the control of a fungal constitutive promoter (gpd-Bbchit1-BmChBD) and transformed into B. bassiana. Insect bioassays showed a 23% reduction in time to death in the transformant compared to the wild-type fungus. This transformant also showed greater virulence than another construct (gpd-Bbchit1) with the same constitutive promoter but lacking the chitin-binding domain. We utilized a strategy where genetic components of the host insect can be incorporated into the fungal pathogen in order to increase host cuticle penetration ability.


2018 ◽  
Vol 64 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Cynthia Barbosa Rustiguel ◽  
María Fernández-Bravo ◽  
Luis Henrique Souza Guimarães ◽  
Enrique Quesada-Moraga

Studies conducted over the last decades have shown the potential of entomopathogenic fungi for the biocontrol of some insect pests. Entomopathogenic fungi infect their host through the cuticle, so they do not need to be ingested to be effective. These fungi also secrete secondary metabolites and proteins that are toxic to insect pests. In this context, we analyzed the pathogenicity of Metarhizium anisopliae (Metschn.) strains IBCB 384 and IBCB 425 and Beauveria bassiana (Bals.-Criv.) Vuill. strains E 1764 and E 3158 against Galleria mellonella (Linn.) larvae, during pre-invasion and post-invasion phases. The results showed M. anisopliae, especially strain IBCB 384, was most virulent in the pre-invasion phase against G. mellonella, whereas B. bassiana, especially strain E 1764, was most virulent in the post-invasion phase. During in vivo development and in the production of toxic serum, B. bassiana E 3158 was the most virulent. Different fungal growth (or toxin) strategies were observed for studied strains. Metarhizium anisopliae IBCB 425 prioritizes the growth strategy, whereas strain IBCB 384 and B. bassiana strains E 1764 and E 3158 have a toxic strategy. All strains have pathogenicity against G. mellonella, indicating their possible use for biocontrol.


2016 ◽  
Author(s):  
Marie-Caroline Lefort ◽  
Aimee C McKinnon ◽  
Tracey L Nelson ◽  
Travis R Glare

Background. The New Zealand forest industry would greatly benefit from a successful way of controlling insect pests. The entomopathogenic fungus, Beauveria bassiana could hold such potential and has previously been shown to be capable of endophytic colonisation of the Monterey pine Pinus radiata. Nevertheless clarifications on its mode of transmission, persistence and action in this plant are required. In this study we investigated B. bassiana transmission and persitence in P. radiata and whether this fungus is beneficial to P. radiata by testing its effect as a plant endophyte on the fitness performance of above and belowground insect feeders. Methods. Both culturing and molecular approaches were used to detect the occurrence B. bassiana in pines. Transmission electron microscopy of positive germinating seeds was also used to locate the fungus. Bioassays were conducted on root and needle feeding insects using Beauveria positive and endophyte free pine seedlings. Results. Beauveria bassiana was detected in seedlings which had not previously been exposed to the fungus, indicating a vertical mode of transmission. The fungus could colonise all parts of the pines, but did not always persist. We found that the presence of the fungus negatively affects the fitness of the below-ground insect feeding on the plant by reducing their survival by over 10% and their weight by 5%. This study also showed that the mode of action of endophytic B. bassiana in pine is likely to be by feeding deterrence of insects induced locally by fungal metabolites, rather than by direct fungal infection of the insects. Discussion. A vertically transmitted beneficial endophyte of pine could be used as a cost effective approach to control insect pest in these commercially grown trees.


2018 ◽  
Vol 19 (6) ◽  
pp. 2365-2373 ◽  
Author(s):  
AYU SAFITRI ◽  
SITI HERLINDA ◽  
ARUM SETIAWAN

Safitri A, Herlinda S, Setiawan A. 2018. Entomopathogenic fungi of soils of freshwater swamps, tidal lowlands, peatlands, and highlands of South Sumatra, Indonesia. Biodiversitas 19: 2365-2373. Ecosystems of lowlands and highlands in South Sumatra have specific characteristics of soils and vegetations that can affect the availability of entomopathogenic fungi. This study aimed to explore and identify species and to determine inoculum potentials of the entomopathogenic fungi from soils of freshwater swamps, tidal lowlands, peatlands, and highlands. Baiting of entomopathogenic fungi on soil samples used the larvae of Tenebrio molitor. The entomopathogenic fungi species found in this research were Beauveria bassiana and Metarhizium anisopliae. The number of the fungal isolates were 30 isolates consisting of nine isolates of B. bassiana and 21 isolates of M. anisopliae.The highest number of isolates was found in the highland ecosystem (11 isolates) and the lowest was found in peatland ecosystem (4 isolates). The highest percentage average of inoculum potentials of the fungi was found in the high land ecosystem (4.04%) and the lowest one was found in freshwater swamps ecosystem (2.11%). Based on the vegetation type, the soil planted with mustard in Talang Patai-Pagaralam (highland ecosystem) had the highest inoculum potentials (9.33%). These fungi will make an important contribution to the biological control for insect pests in lowland to highland ecosystems in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document