scholarly journals Effect of CO2 content in CNG on the combustion process in a dual-fuel compression ignition engine

2015 ◽  
Vol 162 (3) ◽  
pp. 91-101
Author(s):  
Sławomir WIERZBICKI ◽  
Maciej MIKULSKI ◽  
Michał ŚMIEJA

Seeking alternative sources of energy for its more effective use, reducing emissions of toxic pollutants to the atmosphere and counteracting global warming are nowadays the major areas of development in the power industry, including the design of combustion engines. Currently, the research into the use of new fuels, which may be effective sources of energy, is performed by many scientific centres. The use of biogas for production of energy in cogeneration systems is one of the ways for improvement of energy balance. In the research described herein, a dual-fuel compression ignition engine was fuelled with gaseous fuel with variable CNG and CO2 ratios. The tests were performed for engine fuelling controlled by both an original controller with the software optimised for single-fuel operation and for the injection of a pilot dose of diesel controlled by a dedicated controller enabling the adjustment and control of the injection and dose parameters. This paper presents the effect of carbon dioxide content in gaseous fuel on the combustion process and emission of toxic compounds in the engine examined.

2014 ◽  
Vol 46 (1) ◽  
pp. 125-134
Author(s):  
Sławomir Wierzbicki ◽  
Michał Śmieja ◽  
Andrzej Piętak

One of the ways of increasing the share of renewable fuels in the overall energy balance is to develop effective methods for using low calorific gaseous fuels, including biogas, to fuel combustion engines. This paper presents the results of research on the effect of changing the diesel fuel pilot charge injection advance angle on the operating parameters of a dual-fuel compression-ignition engine. The obtained results confirm the significant effect of the pilot charge injection advance angle on the engine torque value at a constant engine speed.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Xiao Huang ◽  
Lulu Kang ◽  
Mateos Kassa ◽  
Carrie Hall

In-cylinder pressure is a critical metric that is used to characterize the combustion process of engines. While this variable is measured on many laboratory test beds, in-cylinder pressure transducers are not common on production engines. As such, accurate methods of predicting the cylinder pressure have been developed both for modeling and control efforts. This work examines a cylinder-specific pressure model for a dual fuel compression ignition engine. This model links the key engine input variables to the critical engine outputs including indicated mean effective pressure (IMEP) and peak pressure. To identify the specific impact of each operating parameter on the pressure trace, a surrogate model was produced based on a functional Gaussian process (GP) regression approach. The pressure trace is modeled as a function of the operating parameters, and a two-stage estimation procedure is introduced to overcome various computational challenges. This modeling method is compared to a commercial dual fuel combustion model and shown to be more accurate and less computationally intensive.


Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Maciej Mikulski ◽  
Sławomir Wierzbicki

Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.


2021 ◽  
Author(s):  
Davide Lanni ◽  
Enzo Galloni ◽  
Gustavo Fontana ◽  
Roberto Ianniello ◽  
Carlo Beatrice ◽  
...  

Author(s):  
B. B. Sahoo ◽  
U. K. Saha ◽  
N. Sahoo

Syngas, an environmentally friendly alternative gaseous fuel for internal combustion engine operation, mainly consists of carbon monoxide (CO) and hydrogen (H2). It can substitute fossil diesel oil in a compression ignition diesel engine through dual fuel operation route. In the present investigation, experiments were conducted in a constant speed single cylinder direct injection diesel engine fuelled with syngas-diesel in a dual fuel operation mode. The main contribution of this study is to introduce the new synthetic gaseous fuel (syngas) including the possible use of CO gas, an alternative diesel engine fuel. In this work, four different H2 and CO compositions of syngas were chosen for dual fuel study under different engine loading levels. Keeping the same power output at the corresponding tested loads, the engine performance of dual fuel operations were compared to that of diesel mode for the entire load range. The maximum diesel replacement in the engine was found to be 72.3% for 100% H2 fuel. This amount replacement rate was reduced for the low energetic lower H2 content fuels. The brake thermal efficiency was always found highest (about 21%) in the case of diesel mode operation. However, the 100% H2 syngas showed a comparative performance level with diesel mode at the expense of higher NOx emissions. At 80% engine load, the brake thermal efficiency was found to be 15.7% for 100% CO syngas. This value increased to 16.1%, 18.3% and 19.8% when the 100% CO syngas composition was replaced by H2 contents of 50%, 75% and 100%, respectively. At part loads (i.e., at 20% and 40%), dual fuel mode resulted a poor performance including higher emission levels. In contrast, at higher loads, syngas fuels showed a good competitive performance to diesel mode. At all the tested loads, the NOx emission was observed highest for 100% H2 syngas as compared to other fuel conditions, and a maximum of 240 ppm was found at 100% load. However, when the CO fractions of 25%, 50% and 100%, were substituted to hydrogen fuel, the emission levels got reduced to 175 ppm, 127 ppm, and 114 ppm, respectively. Further, higher CO and HC emission levels were recorded for 25%, 50%, and 100% CO fraction syngas fuels due to their CO content. Ignition delay was found to increase for the dual fuel operation as compared to diesel mode, and also it seemed to be still longer for higher H2 content syngas fuels. The peak pressure and maximum rate of pressure rise were found to decrease for all the cases of dual fuel operation, except for 100% H2 syngas (beyond 60% load). The reduction in peak pressure resulted a rise in the exhaust gas temperature at all loads under dual fuel operation. The present investigation provides some useful experimental data which can be applied to the possible existing engine parameters modifications to produce a competitive syngas dual fuel performance at all the loading operations.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2817
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak ◽  
Karol Grab-Rogaliński

The development of compression ignition engines depends mainly on using alternative fuels, such as alcohols. The paper presents the results of tests of a stationary compression ignition engine fueled with mixtures of diesel oil and n-butanol with an energy share from 0 to 60%. The combustion and emission results of a dual-fuel engine were compared to a conventional diesel-only engine. As part of the work, the combustion process, including changes in pressure and heat release rate, as well as exhaust emissions from the test engine, were investigated. The main operational parameters of the engine were determined, including mean indicated pressure, thermal efficiency and specific energy consumption. Moreover, the stability of the engine operation was analyzed. The research shows that the 60% addition of n-butanol to diesel fuel increases the ignition delay (by 39%) and shortens the combustion duration (by 57%). In addition, up to 40%, it results in increased pmax, HRRmax and PPRmax. The engine was characterized by the highest efficiency, equal to 41.35% when operating on DB40. In the whole range of alcohol content, the dual-fuel engine was stable. With the increase of n-butanol content to 40%, the emission of NOx increased. The lowest concentration of CO was obtained during the combustion of DB50. After the initial increase (for DB20), the THC emission was reduced to the lowest value for DB40. Increasing the energy share of alcohol to 60% resulted in a significant, more than 43 times, reduction in soot emissions.


Sign in / Sign up

Export Citation Format

Share Document