scholarly journals Thermal loads of a piston in a diesel engine during startup

2008 ◽  
Vol 133 (2) ◽  
pp. 20-25
Author(s):  
Janusz MYSŁOWSKI ◽  
Krzysztof TALAGA

The paper presents the issue of thermal loads of a piston in a combustion engine with direct injection during startup. Theoretical assumptions have been described as well as the programme of engine test bed and simulation research based on the previous results of tests in the low temperature test chamber. Differences taking place in the piston thermal loads have been discussed as well as their influence on an efficient startup at low ambient temperatures

Author(s):  
Mirko Baratta ◽  
Andrea E. Catania ◽  
Francesco C. Pesce

During the last years, the integration of computational CFD tools in the internal combustion (IC) engine design process has continuously been increased, allowing to save time and cost as the need of experimental prototypes has diminished. Numerical analyses of IC engine flows are rather complex from both the conceptual and operational sides. In fact, such flows involve a variety of unsteady phenomena, and the right balance between numerical solution accuracy and computational cost should be always reached. The present paper is focused on computational modeling of natural gas (NG) direct injection (DI) processes from a poppet-valve injector into a bowl-shaped combustion chamber. At high injection pressures, the efflux of gas from the injector and the mixture formation processes include compressible and turbulent flow features, such as rarefaction waves and shock formation, which are difficult to be accurately captured by the numerical simulation, particularly when combustion chamber geometry is complex and piston and intake/exhaust valve grids are moving. A three-dimensional moving grid model of the combustion engine chamber, originally developed by the authors, was enhanced by increasing the accuracy in the sonic section proximity of the critical valve seat nozzle, in order to precisely capture the expansion dynamics the methane undergoes inside the injector and immediately downstream from it. The enhanced numerical model was validated by comparing numerical results to Schlieren experimental images for nitrogen injection into a constant-volume bomb. Then, numerical studies were carried out in order to characterize the fuel jet properties and the evolution of mixture-formation for a centrally-mounted injector configuration in both cases of a pancake test chamber and the real-shaped engine chamber. Finally, the fluid properties computed by the model in the throat-section of the critical nozzle were taken as reference data for developing a new effective ‘virtual injector’ model, which allows the designer to remove the whole computational domain upstream from the sonic section of the nozzle, keeping the flow properties practically unchanged. The outcomes of such a virtual injector model were shown to be in very good agreement with the results of the enhanced complete injector model, confirming the reliability of the proposed novel approach.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Mirko Baratta ◽  
Andrea E. Catania ◽  
Francesco C. Pesce

During the last few years, the integration of CFD tools in the internal combustion (IC) engine design process has continually increased, allowing time and cost savings as the need for experimental prototypes has diminished. Numerical analyses of IC engine flows are rather complex from both the conceptual and operational sides. In fact, these flows involve a variety of unsteady phenomena and the right balance between numerical solution accuracy and computational cost should always be reached. The present paper is focused on computational modeling of natural gas (NG) direct injection (DI) processes from a poppet-valve injector into a bowl-shaped combustion chamber. At high injection pressures, the gas efflux from the injector and the mixture formation processes include turbulent and compressible flow features, such as rarefaction waves and shock formation, which are difficult to accurately capture with numerical simulations, particularly when the combustion chamber geometry is complex and the piston and intake/exhaust valve grids are moving. In this paper, a three-dimensional moving grid model of the combustion engine chamber, originally developed by the authors to include simulation of the actual needle lift, has been enhanced by increasing the accuracy in the proximity of the sonic section of the critical valve-seat nozzle, in order to precisely capture the expansion dynamics the methane undergoes inside the injector and immediately downstream from it. The enhanced numerical model was then validated by comparing the numerical results to Schlieren experimental images for gas injection into a constant-volume bomb. Numerical studies were carried out in order to characterize the fuel-jet properties and the evolution of mixture formation for a centrally mounted injector configuration in the case of a pancake-shaped test chamber and the real engine chamber. Finally, the fluid properties calculated by the model in the throat section of the critical nozzle were taken as reference data for developing a new effective virtual injector model, which allows the designer to remove the whole computational domain upstream from the sonic section of the nozzle, keeping the flow properties virtually unchanged there. The virtual injector model outcomes were shown to be in very good agreement with the results of the enhanced complete injector model, substantiating the reliability of the proposed novel approach.


2012 ◽  
Vol 148 (1) ◽  
pp. 35-39
Author(s):  
Jerzy MERKISZ ◽  
Miłosław KOZAK ◽  
Jacek PIELECHA ◽  
Maciej ANDRZEJEWSKI

The aim of the research described in this paper was to determine the potential of RME in reducing particulate emissions from diesel engines. The tests were carried out at Emissions Testing Laboratory, Poznan University of Technology using the AMX-210/100 engine test bed. The AVL Micro Soot Sensor and Smoke Meter were used to measure PM emissions. The emission measurements were carried out over a 13-mode ESC cycle. The tests were conducted on a direct injection (common rail), turbocharged, Euro 4 compliant passenger car diesel engine. Four different diesel fuel/RME blends were tested. These blends contained respectively: 5, 20, 50 and 100% RME.


Author(s):  
Dennis Erdogan ◽  
Stefan Jakubek ◽  
Christian Mayr ◽  
Christoph Hametner

Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 245
Author(s):  
Anja Fink ◽  
Oliver Nett ◽  
Simon Schmidt ◽  
Oliver Krüger ◽  
Thomas Ebert ◽  
...  

The H2 internal combustion engine (ICE) is a key technology for complete decarbonization of the transport sector. To match or exceed the power density of conventional combustion engines, H2 direct injection (DI) is essential. Therefore, new injector concepts that meet the requirements of a H2 operation have to be developed. The macroscopic free stream behavior of H2 released from an innovative fluidic oscillating nozzle is investigated and compared with that of a conventional multi-hole nozzle. This work consists of H2 flow measurements and injection tests in a constant volume chamber using the Schlieren method and is accompanied by a LES simulation. The results show that an oscillating H2 free stream has a higher penetration velocity than the individual jets of a multi-hole nozzle. This behavior can be used to inject H2 far into the combustion chamber in the vertical direction while the piston is still near bottom dead center. As soon as the oscillation of the H2 free stream starts, the spray angle increases and therefore H2 is also distributed in the horizontal direction. In this phase of the injection process, spray angles comparable to those of a multi-hole nozzle are achieved. This behavior has a positive effect on H2 homogenization, which is desirable for the combustion process.


2014 ◽  
Vol 535 ◽  
pp. 333-339
Author(s):  
Yue Chen ◽  
Lin Lv ◽  
Jie Shen

All future engine developments must consider the primary task of achieving the required emission levels. An important step towards the development of combustion engines is the optimization of the flow in the intake ports. The charging movement in the combustion chamber, which is generated by the intake flow, considerably influences the quality of the combustion engine. In this paper, steady CFD analysis were applied to different structures of double-tangent-port. The swirl ratio can be improved while flow coefficient remains unchanged if port eccentricity is 34.4 mm. By defining three characteristic parameters, the speed non-uniformity index, standard deviation and mixture concentration standard deviation and equivalent ratio range, quantitatively describing the combustion process in cylinder, and then compared with transient CFD three-dimensional contours, we can see that characteristic parameters can be more accurate and comprehensive in analyzing the influence of inlet structure of soot formation. Effects of different intake ports on fuel-air mixing in a turbocharged diesel direct injection engine during intake and compression strokes are analyzed. It turns out that the optimized double-tangent-port has the highest uniformity of velocity, in the meanwhile, air/fuel mixing is relatively uniform. On the other hand, mixed-port and double-helix-port can cause uneven flow field which is bad for combustion, even though the swirl ratio can increase largely. Finally, the simulation results show that soot emissions of the optimized double-tangent-port have significantly lower levels, at 2200 r/min under full load.


2018 ◽  
Vol 47 (5) ◽  
pp. 3059-3059 ◽  
Author(s):  
Jerzy Merkisz ◽  
Pawel Fuc ◽  
Piotr Lijewski ◽  
Andrzej Ziolkowski ◽  
Krzysztof T. Wojciechowski

Author(s):  
Elie Haddad ◽  
David Chalet ◽  
Pascal Chesse

Automotive manufacturers nowadays are constantly working on improving their internal combustion engines’ performance by reducing the fuel consumption and emissions, without compromising the power generated. Manufacturers are therefore relying on virtual engine models that can be run on simulation software in order to reduce the amount of time and costs needed, in comparison with experiments done on engine test benches. One important element of the intake system of an internal combustion engine is the throttle valve, which defines the amount of air reaching the plenum before being drawn into the cylinders. This article discusses a widely used model for the estimation of air flow rate through the throttle valve in an internal combustion engine simulation. Experiments have been conducted on an isolated throttle valve test bench in order to understand the influence of different factors on the model’s discharge coefficient. These experiments showed that the discharge coefficient varies with the pressure ratio across the throttle valve and with its angle. Furthermore, for each angle, this variation can be approximated with a linear model composed of two parameters: the slope and the Y-Intercept. These parameters are calibrated for different throttle valve angles. This calibration can be done using automotive manufacturers’ standard engine test fields that are often available. This model is then introduced into an engine simulation model, and the results are compared to the experimental data of a turbocharged engine test bench for validation. They are also compared with a standard discharge coefficient model that varies only with the throttle valve angle. The results show that the new model for the discharge coefficient reduces mass flow estimation errors and allows expanding the applications of the throttle valve isentropic nozzle model.


Sign in / Sign up

Export Citation Format

Share Document