Combustion Engine Test Bed System Identification Under the Presence of Cyclic Disturbances

Author(s):  
Dennis Erdogan ◽  
Stefan Jakubek ◽  
Christian Mayr ◽  
Christoph Hametner
2008 ◽  
Vol 133 (2) ◽  
pp. 20-25
Author(s):  
Janusz MYSŁOWSKI ◽  
Krzysztof TALAGA

The paper presents the issue of thermal loads of a piston in a combustion engine with direct injection during startup. Theoretical assumptions have been described as well as the programme of engine test bed and simulation research based on the previous results of tests in the low temperature test chamber. Differences taking place in the piston thermal loads have been discussed as well as their influence on an efficient startup at low ambient temperatures


2018 ◽  
Vol 47 (5) ◽  
pp. 3059-3059 ◽  
Author(s):  
Jerzy Merkisz ◽  
Pawel Fuc ◽  
Piotr Lijewski ◽  
Andrzej Ziolkowski ◽  
Krzysztof T. Wojciechowski

Author(s):  
Elie Haddad ◽  
David Chalet ◽  
Pascal Chesse

Automotive manufacturers nowadays are constantly working on improving their internal combustion engines’ performance by reducing the fuel consumption and emissions, without compromising the power generated. Manufacturers are therefore relying on virtual engine models that can be run on simulation software in order to reduce the amount of time and costs needed, in comparison with experiments done on engine test benches. One important element of the intake system of an internal combustion engine is the throttle valve, which defines the amount of air reaching the plenum before being drawn into the cylinders. This article discusses a widely used model for the estimation of air flow rate through the throttle valve in an internal combustion engine simulation. Experiments have been conducted on an isolated throttle valve test bench in order to understand the influence of different factors on the model’s discharge coefficient. These experiments showed that the discharge coefficient varies with the pressure ratio across the throttle valve and with its angle. Furthermore, for each angle, this variation can be approximated with a linear model composed of two parameters: the slope and the Y-Intercept. These parameters are calibrated for different throttle valve angles. This calibration can be done using automotive manufacturers’ standard engine test fields that are often available. This model is then introduced into an engine simulation model, and the results are compared to the experimental data of a turbocharged engine test bench for validation. They are also compared with a standard discharge coefficient model that varies only with the throttle valve angle. The results show that the new model for the discharge coefficient reduces mass flow estimation errors and allows expanding the applications of the throttle valve isentropic nozzle model.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3478 ◽  
Author(s):  
Tomasz Skrzek ◽  
Mirosław Rucki ◽  
Krzysztof Górski ◽  
Jonas Matijošius ◽  
Dalibor Barta ◽  
...  

This paper addresses the issue of metrological accuracy of instantaneous in-cylinder pressure measurement in a diesel engine test bed. In studies, the central unit has been the single-cylinder AVL 5402 engine. The pressure measurement was performed with a sensor designed for thermodynamic analysis, and the results were related to the crank angle, where two rotations corresponding to the four-stroke working cycle were denoted as angles between −360° and +360°. The novelty of this paper is the proposition of how to perform a type A uncertainty estimation of the in-cylinder pressure measurement and to assess its repeatability. It was demonstrated that repeatability of the measurement during the ignition process was difficult to estimate because of the phenomena that cannot ensure the repeatability conditions. To solve the problem, two methods were proposed. In one method, the pressure was measured in the subsequent cycles immediately after the ignition was turned off, and in another method, the engine was driven by a starter. The latter method provided maximal pressure values much lower than during usual tests. The obtained repeatability of measured pressure was %EV = 0.4%, which proved high capability of the evaluated measurement system.


MTZ worldwide ◽  
2006 ◽  
Vol 67 (7-8) ◽  
pp. 29-32
Author(s):  
Gerald Gaberscik ◽  
Rudolf Gurtner ◽  
Werner Tripolt
Keyword(s):  

2014 ◽  
Vol 663 ◽  
pp. 373-380
Author(s):  
Azher Razzaq Hadi Witwit ◽  
Azman Yasin ◽  
Horizon Gitano ◽  
Mohammed Ismael Mahmood

In this study, we will address the problem of knocking in internal combustion engines, and some of the factors affecting the knocking, through the study of the power of the effect of each factor after finding a model representing the relationship between the factors. We found Curve fitting model from data that has been obtained through the engine test (1.3L Campro, modified to turbocharger, 4-cylinder, MPI). This model has been evaluated statistically after finding the parameters that intervened in the construction of that model.


2013 ◽  
Vol 832 ◽  
pp. 248-253
Author(s):  
B.S. Bidita ◽  
Suraya Abdul Rashid ◽  
Azni B. Idris ◽  
Mohamad Amran Mohd Salleh

Nanoemulsions are a class of nanomaterials which play an increasingly important role in commercial and environmental aspects. Water-in-diesel (W/D) nanoemulsion is considered one of the environmental friendly alternative fuels for reducing the emission pollution of internal combustion engine such as diesel engines. In this context, a study has been made to evaluate the combustion characteristics of W/D nanoemulsion fuel. A wide range of surfactant concentration (0.25% to 0.40% v/v) with varying amount of water percentage (0.5% to 0.8% v/v) was used in the preparation of W/D nanoemulsion fuel. The high energy emulsification method was applied to prepare W/D nanoemulsions. The combustion characteristics of W/D nanoemulsions are presented in terms of different formulating compositions. An engine test bed was used to combust the W/D nanoemulsions for measuring the exhaust emission concentrations such as CO, CO2 and NH3. A reduction in the concentrations of exhaust gas emissions was notified.


Sign in / Sign up

Export Citation Format

Share Document