scholarly journals Combustion characteristics of various fuels during research octane number testing on an instrumented CFR F1/F2 engine

2017 ◽  
Vol 171 (4) ◽  
pp. 164-169
Author(s):  
Christopher KOLODZIEJ ◽  
Thomas WALLNER

The Cooperative Fuels Research (CFR) engine is the long-established standard for characterization of fuel knock resistance in spark-ignition internal combustion engines. Despite its measurements of RON and MON being widely used, there is little understanding of what governs the CFR octane rating for fuels of various chemical compositions compared to primary reference fuels (iso-octane and n-heptane). Detailed combustion characteristics were measured on a highly instrumented CFR F1/F2 engine during RON testing of fuels with significantly different chemical composition. The results revealed differences in the cylinder pressure and temperature conditions, as well as knocking characteristics.

2021 ◽  
Vol 13 (15) ◽  
pp. 8237
Author(s):  
István Árpád ◽  
Judit T. Kiss ◽  
Gábor Bellér ◽  
Dénes Kocsis

The regulation of vehicular CO2 emissions determines the permissible emissions of vehicles in units of g CO2/km. However, these values only partially provide adequate information because they characterize only the vehicle but not the emission of the associated energy supply technology system. The energy needed for the motion of vehicles is generated in several ways by the energy industry, depending on how the vehicles are driven. These methods of energy generation consist of different series of energy source conversions, where the last technological step is the vehicle itself, and the result is the motion. In addition, sustainability characterization of vehicles cannot be determined by the vehicle’s CO2 emissions alone because it is a more complex notion. The new approach investigates the entire energy technology system associated with the generation of motion, which of course includes the vehicle. The total CO2 emissions and the resulting energy efficiency have been determined. For this, it was necessary to systematize (collect) the energy supply technology lines of the vehicles. The emission results are not given in g CO2/km but in g CO2/J, which is defined in the paper. This new method is complementary to the European Union regulative one, but it allows more complex evaluations of sustainability. The calculations were performed based on Hungarian data. Finally, using the resulting energy efficiency values, the emission results were evaluated by constructing a sustainability matrix similar to the risk matrix. If only the vehicle is investigated, low CO2 emissions can be achieved with vehicles using internal combustion engines. However, taking into consideration present technologies, in terms of sustainability, the spread of electric-only vehicles using renewable energies can result in improvement in the future. This proposal was supported by the combined analysis of the energy-specific CO2 emissions and the energy efficiency of vehicles with different power-driven systems.


Practical mechanical systems often operate with some degree of uncertainty. The uncertainties can result from poorly known or variable parameters, from uncertain inputs or from rapidly changing forcing that can be best described in a stochastic framework. In automotive applications, cylinder pressure variability is one of the uncertain parameters that engineers have to deal with when designing and analyzing internal combustion engines. Multi-body dynamics is a powerful numerical tool largely implemented during the design of new engines. In this paper the influence of cylinder pressure cyclic variability on the results obtained from the multi-body simulation of engine dynamics is investigated. Particular attention is paid to the influence of these uncertainties on the analysis and the assessment of the different engine vibration sources. A numerical transfer path analysis, based on system dynamic sub structuring is used to derive and assess the internal engine vibration sources. In order to investigate the cyclic variability of cylinder pressure, a Monte Carlo approach is adopted. Starting from measured cylinder pressure that exhibits cyclic variability, random Gaussian distribution of the equivalent force applied on the piston is generated. The aim of this paper is to outline a methodology which can be used to derive correlations between cyclic variability and statistical distribution of results. The statistical information derived can be used to advance the knowledge of the multi-body analysis and the assessment of system sources when uncertain inputs are considered.


Author(s):  
P J Burnett ◽  
B Bull ◽  
R J Wetton

The performance characteristics of the piston ring-liner assembly and the lubricant within it are critical for the operation of modern internal combustion engines. The ring pack can directly affect engine friction, oil consumption and oil degradation, which in turn can impact upon fuel economy, emissions and engine wear. The operation of this system is complex and no single technique is capable of fully characterizing the processes occurring. This paper outlines the range of both experimental and theoretical methods that are being applied to the study of this system and the lubricant within it. These include the modelling of ring pack gas and oil flows, and direct measurement of piston temperatures, ring belt pressures and piston ring motion. Characterization of lubricant degradation via direct sampling of oil from the top ring groove of an operating engine has also been used. The merits of such a multi-faceted approach are discussed in relation to piston deposit formation.


2017 ◽  
Author(s):  
John Hunter Mack ◽  
Vi H. Rapp ◽  
Malte Broeckelmann ◽  
Taek Soon Lee ◽  
Robert W. Dibble

This paper investigates the anti-knock properties of biofuels that can be produced from microorganism metabolic processes. The biofuels are rated using Research Octane Number (RON) and Blending Research Octane Number (BRON), which determine their potential as additives for fuel in spark ignition (SI) engines. Tests were conducted using a single-cylinder Cooperative Fuel Research (CFR) engine and performance of the biofuels was compared to primary reference fuels (PRFs). The investigated fuels include 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, 2-methylpropan-1-ol (isobutanol), and limonene. Results show that 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 2-methylpropan-1-ol (isobutanol) sufficiently improve the anti-knock properties of gasoline.


2012 ◽  
Vol 260-261 ◽  
pp. 312-317 ◽  
Author(s):  
Ferdinando Corriere ◽  
Giorgia Peri ◽  
Vincenzo La Rocca

Biodiesel from vegetable oils has been analyzed and its suitability for internal combustion engines has been assessed. The Standard biofuel’s characteristics have been investigated. Gas chromatography (GC) tests were carried out to characterize the fatty acid behavior. It was found that the mass percentage of saturated fatty acids did not change substantially with time, while unsaturated fatty acids increased with time for both B100 and B30. An increase in density for B100 and B30 with time was noted. Biodiesel density was within the standardization. The calorific values of biodiesel and its blend increased with time. Higher heating value for B100 increased from 41 to 43 MJ/kg while B30 increased from 44 to 45 MJ/kg.


Sign in / Sign up

Export Citation Format

Share Document