scholarly journals ECU calibration for gaseous dual fuel supply system in compression ignition engines

2020 ◽  
Vol 182 (3) ◽  
pp. 33-37
Author(s):  
Denys Stepanenko ◽  
Zbigniew Kneba

The dual fuel (DF) combustion mode is proven solution that allows to improve or get at the same level engine performance and reduce toxic compounds in exhaust gases which is confirmed by researchers and end-users. DF combustion mode uses two fuels gaseous fuel as a primary energy source and a pilot quantity of diesel fuel as ignition source. However, in order, to fully take advantage of the potential of the dual fuel mode, DF system must be proper calibrated. Despite the existence of commercial control systems for dual fuel engines on the market, the literature on the important parameters for the engine's operation introduced during calibration is scarce. This article briefly describes a concept of working algorithm and calibration strategy of a dual fuel electronic control unit (ECU) The purpose of calibration is to achieve the greatest possible use of an alternative gaseous fuel without causing accelerated engine wear.

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881407
Author(s):  
Yasin Karagöz ◽  
Majid Mohammad Sadeghi

In this study, it was aimed to operate today’s compression ignition engines easily in dual-fuel mode with a developed electronic control unit. Especially, diesel engines with mechanical fuel system can be easily converted to common-rail fuel system with a developed electronic control unit. Also, with this developed electronic control unit, old technology compression ignition engines can be turned into dual-fuel mode easily. Thus, thanks to the flexibility of engine maps to be loaded into the electronic control unit, diesel engines can conveniently be operated with alternative gas fuels and diesel dual fuel. In particular, hydrogen, an alternative, environmentally friendly, and clean gas fuel, can easily be used with diesel engines by pilot spraying. Software and hardware development of electronic control unit are made, in order to operate a diesel engine with diesel+hydrogen dual fuel. Finally, developed electronic control unit was reviewed on 1500 r/min stable engine speed on different hydrogen energy rates (0%, 15%, 30%, and 45% hydrogen) according to thermic efficiency and emissions (CO, total unburned hydrocarbons, NOx, and smoke), and apart from NOx emissions, a significant improvement has been obtained. There was no increased NOx emission on 15% hydrogen working condition; however, on 45% hydrogen working condition, a dramatic increase arose.


2003 ◽  
Vol 125 (3) ◽  
pp. 827-836 ◽  
Author(s):  
G. A. Karim

In the dual fuel engine much of the energy release comes from the combustion of the gaseous fuel while only a small amount of diesel liquid fuel provides ignition through timed cylinder injection. Such operation with optimum conversion methods has the potential to provide operational characteristics that are comparable or superior to those of the corresponding diesel or spark ignition engines. These characteristics may be realized only if sufficiently effective measures can be ensured both for the avoidance of knock, usually at high loads, and incomplete gaseous fuel utilization at relatively light loads. An objective of this contribution is to demonstrate that the main effort needed to overcome the problems associated with the operation of gas fueled dual fuel engines is via a better control of the relatively complex processes of combustion. Both experimental and analytical modeling procedures for effecting optimum improvement to the combustion process are described.


2021 ◽  
Author(s):  
Shouvik Dev ◽  
David Stevenson ◽  
Amin Yousefi ◽  
Hongsheng Guo ◽  
James Butler

Abstract Diesel fueled generators are widely used for power generation in remote and/or off-grid communities. In such communities, local organic waste streams can be used to generate biogas which can be used to replace diesel used by diesel generators to lower fuel cost and reduce greenhouse gas (GHG) emissions. Diesel powered generators can be easily retrofitted with a biogas dosing line in the engine intake to introduce biogas, but appropriate optimization would be of great help to further improve generator performance and reduce GHG emissions. The objective of this research is to demonstrate simplified optimization methods that can reduce GHG emissions (carbon dioxide and methane) from such retrofitted dual-fuel engines under various biogas compositions. The study was conducted on a modern 30 kilowatt (kW) generator using an electronically controlled, four-stroke, four-cylinder, direct injection, turbo-charged diesel engine. The engine was operated with the factory electronic control unit (ECU) and a programmable ECU which allowed for control of the fuel injections and exhaust gas recirculation (EGR) valve. Biogas was simulated by using natural gas (with more than 95% methane by volume) which was diluted with either carbon dioxide or nitrogen. This study consisted of two areas. The first one was the comparison of the engine performance when operating with biogas using the factory ECU and the programmable ECU with user optimized fuel injection. The second one was the influence of volume fraction of carbon dioxide or nitrogen in the biogas. The test results reinforced the importance of optimizing the diesel injections when the engine was operated in the biogas-diesel dual-fuel mode to ensure complete combustion and achieve a reduction in GHG emissions. Increasing nitrogen fraction had a minimal effect on the emissions, but increasing carbon dioxide fraction caused the NOx and methane emissions to decrease, and the indicated thermal efficiency to increase.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5663 ◽  
Author(s):  
Mahantesh Marikatti ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
Y.H. Basavarajappa ◽  
Manzoore Elahi M Soudagar ◽  
...  

The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate.


2013 ◽  
Vol 325-326 ◽  
pp. 1176-1179
Author(s):  
Xiao Ning Lv ◽  
Jiang Tao Qin ◽  
Jing Bo Li ◽  
Bo Wen Zou ◽  
Fu Qiang Luo

In order to convert the high pressure common rail system engine to CNG/Diesel dual fuel engine, an electronically controlled system is developed. The system includes a CNG fuel supply system, the CNG electronic control unit (ECU) and its matching harness etc. During starting and idle load conditions, the engine runs under pure diesel mode, when the speed and load reached a certain set point, the diesel ECU reduces the pilot diesel quantity, meanwhile, the CNG ECU increases the natural gas quantity, then the engine runs under dual fuel mode. The engine experiment data show that in different conditions, the highest substitution rate is 90% and the average substitution rate is 83%; the average savings ratio of operation cost per hour is 26%.


2018 ◽  
Vol 3 (2) ◽  
pp. 138-143
Author(s):  
Rifki Mufti Rahman ◽  
Dwi Widjanarko ◽  
M. Burhan Rubai Wijaya

The achievement of electronic-based motorcycle engine or Fuel Injection (FI) has better capability or power compared to conventional system vehicles. This research aims to determine the performance difference of using racing electronic control unit (ECU) compared to standard ECU of an automatic motorcycle. The experiment was carried out on a Honda Vario 125cc motorcycle manufactured in 2013. The research method is experimental research and uses descriptive statistic method. Research findings inform that the maximum torque of the standard ECU is 16.63 Nm at 3500 rpm, and the maximum power is 6.36 KW at 4500 rpm. The racing ECU (Iquteche) has a maximum torque of 22.42 Nm at 2500 rpm, and maximum power of 7.70 kW. The apparent increase in torque is around 36.58 % and in power is around 33.9 %. It can be concluded that the Iquteche ECU provides a more optimized engine performance on an automatic motorcycle.Prestasi mesin sepeda motor berbasis elektronik atau Fuel Injection (FI) memiliki kemampuan atau tenaga yang lebih baik dibandingkan dengan kendaraan sistem konvensional. Penelitian ini bertujuan untuk mengetahui perbedaan unjuk kerja mesin menggunakan Electronic Control Unit tipe racing dan tipe standar pada sepeda motor automatic. Objek penelitian dilakukan pada kendaraan Honda Vario 125cc tahun pembuatan 2013. Penelitian dilakukan dengan menggunkan metode experimental serta analisis data statistik deskriptif. Hasil penelitian menunjukkan bahwa diperoleh data torsi maksimal ECU standar sebesar 16.63 N.m pada putaran 3500 rpm, dan daya tertinggi sebesar 6.36 kW pada putaran 4500 rpm. Sedangkan hasil pengujian menggunakan ECU Iquteche diperoleh torsi tertingi sebesar 22.42 N.m pada putaran 2500 rpm, dan daya tertinggi sebesar 7.70 kW. Selain itu juga diketahui adanya peningkatan torsi mesin sebesar 36.58% dan peningkatan daya sebesar 33.99%, serta diketahui juga bahwa penggunaan ECU Iquteche lebih efektif untuk meningkatkan unjuk kerja mesin pada kendaraan jenis sepeda motor automatic.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


1999 ◽  
Author(s):  
G. H. Abd Alla ◽  
H. A. Soliman ◽  
O. A. Badr ◽  
M. F. Abd Rabbo

Abstract A quasi-two zone predictive model developed in the present work for the prediction of the combustion processes in dual fuel engines and some of their performance features. Methane is used as the main fuel while employing a small quantity of liquid fuel (pilot) injected through the conventional diesel fuel system. This model emphasizes the effects of chemical kinetics activity of the premixed gaseous fuel on the combustion performance, while the role of the pilot fuel in the ignition and heat release processes is considered. A detailed chemical kinetic scheme consists of 178 elementary reaction steps and 41 chemical species is employed to describe the oxidation of the gaseous fuel from the start of compression to the end of expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters such as pressure, temperature, rates of energy release and composition. Predicted values for methane operation show good agreement with corresponding previous experimental values over a range of operating conditions mainly associated with high load operation.


Author(s):  
D Tziourtzioumis ◽  
L Demetriades ◽  
O Zogou ◽  
A M Stamatelos

The results of engine bench tests of a 2.0l common-rail high-pressure injection passenger car diesel engine fuelled by B70 biodiesel blend are compared with the corresponding results of baseline tests with standard EN 590 diesel fuel. Engine performance and carbon monoxide (CO), total hydrocarbon (THC), and nitrogen oxide (NO x) emissions were measured. Also, indicative particulate sampling was made with a simplified undiluted exhaust sampler. The aim of this study was to understand better how the engine's electronic control unit (ECU) responds to the different fuel qualities. A series of characteristic operation points for engine testing is selected to serve this purpose better. Data acquisition of the engine ECU variables was made through INCA software. Also, additional data acquisition based on external sensors was carried out by means of Labview software. The results enhance understanding of the engine ECU behaviour with the B70 biodiesel blend. Also, they are compared with what is known from the related literature for the behaviour of common-rail diesel engines with biodiesel blends.


Sign in / Sign up

Export Citation Format

Share Document