scholarly journals Degree of conversion of resin cements polymerized under different thicknesses of feldspathic porcelain

2019 ◽  
Vol 18 ◽  
pp. e191451
Author(s):  
Marcio Leandro Von Dreifus Marinho ◽  
Thaís Yumi Umeda Suzuki ◽  
Wirley Gonçalves Assunção ◽  
João Carlos Silos Moraes ◽  
Paulo Henrique dos Santos

Aim The aim of this study is to evaluate the degree of conversion (DC) of resin cements polymerized under different thicknesses of feldspathic dental ceramic. Methods: Forty samples of RelyX ARC and RelyX Veneer resin cements were polymerized under Starlight feldspathic ceramic discs (DeguDent Gmbh) with 0.5 mm, 1.2 mm, 1.8 mm, and 2.4 mm in thickness. The control group was cured without the interposition of ceramic. The DC measurements were performed 10 minutes, 1 hour, and 24 hours after the light-activation in a Nexus 670 FTIR spectrophotometer. Data were analyzed by two-way repeated measure ANOVA and Fisher PLSD test. Results: The RelyX ARC showed higher DC for all ceramic thicknesses. There was significant decrease in DC related to an increase in ceramic thickness. For RelyX ARC, the values of DC obtained after 1 hour and 24 hours did not differ statistically between them, but they were higher than those analyzed after 10 minutes. For RelyX Veneer cement, there was gradual increase in the DC up to 24 hours. Conclusion: The higher the thicknesses of ceramic, the lower DC of the resin cement.

2015 ◽  
Vol 16 (5) ◽  
pp. 347-352 ◽  
Author(s):  
Seok-Hwan Cho ◽  
Arnaldo Lopez ◽  
David W Berzins ◽  
Soni Prasad ◽  
Kwang Woo Ahn

ABSTRACT Aim This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and methods A total of 80 ceramic veneer disks were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These disks were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into four subgroups, based on ceramic disk thickness (0.3, 0.6, 0.9, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using analysis of variance (ANOVA). Results For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (p < 0.05). For the MH values between LC and DC resin cement groups, there was statistically significant difference (p < 0.05); overall, the MH values of LC resin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (p < 0.05). However, among the LC subgroups, there was no statistically significant difference among them (p > 0.05). Conclusion The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance While clinically adequate polymerization of LC resin cement can be achieved with a maximum 1.2 mm of porcelain veneer restoration, the increase of curing time or light intensity is clinically needed for DC resin cements at the thickness of more than 0.9 mm. How to cite this article Cho S-H, Lopez A, Berzins DW, Prasad S, Ahn KW. Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Lightcured and Dual-cured Resin Cements. J Contemp Dent Pract 2015;16(5):347-352.


Author(s):  
Lincoln Pires Silva Borges ◽  
Gilberto Antônio Borges ◽  
Américo Bortolazzo Correr ◽  
Jeffrey A. Platt ◽  
Sidney Kina ◽  
...  

AbstractThis in vitro study evaluates the influence of pressed lithium disilicate thickness, shade and translucency on the transmitted irradiance and the Knoop microhardness (KHN) of a light-cured resin cement at two depths. One hundred and thirty-five ceramic discs of IPS e.max Press (Ivoclar Vivadent) were fabricated and divided into twenty-seven groups (n = 5) according to the association between translucency: HT (hight translucency), LT (low translucency), and MO (medium opacity); shade: BL2, A1 and A3.5; and thickness: 0.5 mm, 1.5 mm, and 2.0 mm. One side of each ceramic disc was finished, polished and glazed. The irradiance (mW/cm²) of a multiwave LED light curing unit (Valo, Ultradent) was evaluated with a potentiometer (Ophir 10ª-V2-SH, Ophir Optronics) without (control group) or with interposition of ceramic samples. The microhardness of Variolink Esthetic LC resin cement (Ivoclar Vivadent) was evaluated after 24 h at two depths (100 μm and 700 μm). Data were submitted to ANOVA followed by Tukey’s test (α = 0.05). Irradiance and KHN were significantly influenced by ceramic thickness (p < 0.0001), shade (p < 0.001), translucency (p < 0.0001) and depth (p < 0.0001). Conclusions: the interposition of increasing ceramic thicknesses significantly reduced the irradiance and microhardness of resin cement. Increased depth in the resin cement showed significantly reduced microhardness for all studied groups. Increased ceramic opacity reduced the KHN of the resin cement at both depths for all ceramic thicknesses and shades.


2015 ◽  
Vol 26 (5) ◽  
pp. 484-489 ◽  
Author(s):  
Camila de Carvalho Almança Lopes ◽  
Renata Borges Rodrigues ◽  
André Luis Faria e Silva ◽  
Paulo Cézar Simamoto Júnior ◽  
Carlos José Soares ◽  
...  

Abstract: The aim of this study was to verify the degree of conversion (DC), Vickers microhardness (VH) and elastic modulus (E) of resin cements cured through different ceramic systems. One 1.5-mm-thick disc of each ceramic system (feldspathic, lithium dissilicate and zircônia veneered with feldspathic) was used. Three dual-cured (Allcem, Variolink II and RelyX U200) and one chemically-cured (Multilink) resin cements were activated through ceramic discs. For dual-cured resin cements was used a conventional halogen light-curing unit (Optilux 501 at 650 mW/cm2 for 120 s). Samples cured without the ceramic disc were used as control. The samples were stored at 37 °C for 24 h. ATR/FTIR spectrometry was used to evaluate the extent of polymerization in the samples (n=5). Micromechanical properties - VH and E - of the resin cements (n=5) were measured with a dynamic indentation test. Data were statistically analyzed with two-way ANOVA, Tukey's test and Pearson's correlation (α=0.05). DC was affected only by the type of resin cement (p=0.001). For VH, significant interaction was detected between resin cement and ceramic (p=0.045). The dual-cured resin cements showed no significant differences in mean values for E and significantly higher values than the chemically-cured resin cement. The degree of conversion and the mechanical properties of the evaluated resin cements depend on their activation mode and the type of ceramics used in 1.5 mm thickness. The dual-cured resin cements performed better than the chemically-cured resin cement in all studied properties.


2018 ◽  
Vol 9 (1-2) ◽  
pp. 24-30 ◽  
Author(s):  
Murat Alkurt ◽  
Zeynep Yesil Duymus

Objective: This study aims to compare the color change (Δ E) of 5 resin cements (Panavia SA, Panavia V5, RelyX U200, Variolink NLC clear and +1) after thermocycling. Changes in color of specimens were determined after 10,000 cycles of thermocycling by spectrophotometer in the CIELAB. Materials and Methods: Ceramic disks, simulating laminate veneers, with thicknesses of 0.5, 0.7, and 1.0 mm (A1, IPS e.max) were fabricated. Color differences (Δ E) between the control and test groups were calculated. Data were statistically analyzed by 2-way analysis of variance (ANOVA). Also, Tukey’s multiple comparison tests were applied to know the difference between the groups (α = 0.05). Results: The factors of cement type and thickness of ceramic showed significant influence on Δ E values ( P < .05). After thermocycling, all resin cements, except benzoyl peroxide including resin cement (Pan SA), were showed clinically acceptable to color change limits (Δ E < 3.3). On evaluating the effects of ceramic thickness on color change after thermocyle aging, control group (no ceramic thickness) showed color change ( P < .05) visually. Conclusion: Amine-reduced, amine-free and lacking benzoyl peroxide resin cement showed minimal color change and better color stability.


2011 ◽  
Vol 36 (6) ◽  
pp. 661-669 ◽  
Author(s):  
E Kilinc ◽  
SA Antonson ◽  
PC Hardigan ◽  
A Kesercioglu

Clinical Relevance Resin cements are generally considered as the material of choice in cementation of all-ceramic restorations. The decision between light- and dual-cure resin cement may depend on the properties of the ceramic restoration as well as the location of the tooth. The ceramic thickness has a more intense effect on polymerization than ceramic shade.


2018 ◽  
Vol 43 (6) ◽  
pp. E280-E287 ◽  
Author(s):  
JS Shim ◽  
SH Han ◽  
N Jha ◽  
ST Hwang ◽  
W Ahn ◽  
...  

SUMMARY This study investigated the effects of irradiance and exposure duration on dual-cured resin cements irradiated through ceramic restorative materials. A single light-curing unit was calibrated to three different irradiances (500, 1000, and 1500 mW/cm2) and irradiated to three different attenuating materials (transparent acryl, lithium disilicate, zirconia) with 1-mm thicknesses for 20 or 60 seconds. The changes in irradiance and temperature were measured with a radiometer (or digital thermometer) under the attenuating materials. The degree of conversion (DC) of dual-cure resin cement after irradiation at different irradiances and exposure durations was measured with Fourier transform near infrared spectroscopy. Two-way analysis of variance revealed that irradiance (p&lt;0.001) and exposure duration (p&lt;0.001) significantly affected temperature and DC. All groups showed higher DCs with increased exposure times (p&lt;0.05), but there were no statistically significant differences between the groups irradiated with 1000 mW/cm2 and 1500 mW/cm2 (p&gt;0.05). Higher-intensity irradiances yielded higher temperatures (p&lt;0.05), but exposure time did not affect temperature when materials were irradiated at 500 mW/cm2 (p&gt;0.05).


2016 ◽  
Vol 17 (11) ◽  
pp. 920-925 ◽  
Author(s):  
Bandar MA Al-Makramani ◽  
Fuad A Al-Sanabani ◽  
Abdul AA Razak ◽  
Mohamed I Abu-Hassan ◽  
Ibrahim Z AL-Shami ◽  
...  

ABSTRACT Aim The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan). Materials and methods Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. Results The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups. Conclusion In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks. Clinical significance The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations. How to cite this article Razak AAA, Abu-Hassan MI, AL-Makramani BMA, AL-Sanabani FA, AL-Shami IZ, Almansour HM. Effect of Surface Treatments on the Bond Strength to Turkom-Cera All-Ceramic Material. J Contemp Dent Pract 2016;17(11):920-925.


2017 ◽  
Vol 15 (4) ◽  
pp. 258
Author(s):  
Marcelo Giannini ◽  
Andreia Assis Carvalho ◽  
Ariovaldo Stefani ◽  
Wladimir Franco de Sá Barbosa ◽  
Lawrence Gonzaga Lopes

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


2021 ◽  
Vol 46 (1) ◽  
pp. 107-115
Author(s):  
DM De Paula ◽  
AD Loguercio ◽  
A Reis ◽  
S Sauro ◽  
AH Alves ◽  
...  

Clinical Relevance Use of zirconia primers with a low pH and a high acidic monomer concentration should be employed in combination with dual-cure resin cements that are less sensitive to an acidic environment. Primers with lower 10-MDP concentrations attain better outcomes. SUMMARY Objective: To assess the effects of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) included in experimental ceramic primers on the degree of conversion (DC) and microshear bond strength (μSBS) of a dual-cure resin cement, and on the acidity neutralization potential of zirconia (ZrO2) in comparison to hydroxyapatite (HAp). Methods: Experimental ceramic primers were formulated using 5 wt%, 10 wt%, 20 wt%, or 40 wt% 10-MDP as an acidic functional monomer and camphorquinone (CQ)/amine or 1-phenyl-1,2-propanedione (PPD) as a photoinitiator system. Clearfil Ceramic Primer (Kuraray Dental, Tokyo, Japan) was used as the commercial control. Micro-Raman spectroscopy was used to assess the DC of uncured and light-cured resin cements applied onto primer-treated ZrO2 surfaces. The μSBS and pH of primers were assayed in a universal testing machine and by a digital pH meter (Tec-3MP; Tecnal, Piracicaba, Brazil), respectively. Statistical analysis was performed by one-way analysis of variance (ANOVA) and Tukey’s test (p&lt;0.05). Results: DC was not affected until a concentration of 10% 10-MDP in CQ primer and 5% 10-MDP in PPD primer was reached, when compared with the positive control (p&gt;0.05). Groups 10-MDP 5% in CQ and PPD primers showed the highest μSBS compared with the positive control (p&gt;0.05); however, higher concentrations of 10-MDP induced significant DC and μSBS reduction (p&lt;0.05). HAp neutralized 10-MDP primers, but ZrO2 provided higher acidity to the primers’ pH. Conclusion: 10-MDP monomer should be used in low concentrations in ZrO2 primers to avoid reduction of the polymerization and bond strength of resin cement.


2020 ◽  
Vol 18 ◽  
pp. 228080002091732 ◽  
Author(s):  
Fahad Alkhudhairy ◽  
Fahim Vohra ◽  
Mustafa Naseem ◽  
Mosa Mohammed Owais ◽  
Abdulmajeed H Bin Amer ◽  
...  

Aim: To compare the color stability and degree of conversion (DC) of a resin cement containing a dibenzoyl germanium derivative photo-initiator (Variolink Esthetic) to resin cements containing conventional luting agents. Materials and Method: Spectrophotometry and Fourier transform infrared spectroscopy (FTIR) were used to compare the color stability and DC, respectively, of Variolink Esthetic compared to Calibra, Variolink-N, and NX3 resin cements. Ten specimens (1 × 2 mm2) of each resin cement were photo-polymerized and then subjected to color stability assessments. In addition, 30 samples of each of the four resin cements were prepared and then immersed in three staining solutions (tea, coffee, and distilled water) for two weeks. Changes in color for the immersed versus non-immersed specimens (control specimens) were determined by comparing ΔL (lightness), Δa, and Δb (color components), and an overall ΔE (color difference) obtained from spectrophotometry assays. One-way analysis of variance and a multiple comparison test (Tukey’s test) were used to analyze color stability and DC data. NX3 and Variolink Esthetic resin cements exhibited significantly lower values compared to the dual cured resin cements (Variolink-N and Calibra). Results: The highest DC values were observed among the photo-polymerized samples of Variolink Esthetic (87.18 ± 2.90%), while the lowest DC values were observed among the Variolink-N samples (44.55 ± 4.33%). Conclusion: The resin cement, Variolink Esthetic, containing a novel dibenzoyl germanium derivative photo-initiator exhibited superior color stability ( p < 0.05) and a higher DC than other resin cements containing conventional luting agents in an in vitro setting.


Sign in / Sign up

Export Citation Format

Share Document