scholarly journals Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Light-cured and Dual-cured Resin Cements

2015 ◽  
Vol 16 (5) ◽  
pp. 347-352 ◽  
Author(s):  
Seok-Hwan Cho ◽  
Arnaldo Lopez ◽  
David W Berzins ◽  
Soni Prasad ◽  
Kwang Woo Ahn

ABSTRACT Aim This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and methods A total of 80 ceramic veneer disks were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These disks were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into four subgroups, based on ceramic disk thickness (0.3, 0.6, 0.9, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using analysis of variance (ANOVA). Results For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (p < 0.05). For the MH values between LC and DC resin cement groups, there was statistically significant difference (p < 0.05); overall, the MH values of LC resin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (p < 0.05). However, among the LC subgroups, there was no statistically significant difference among them (p > 0.05). Conclusion The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance While clinically adequate polymerization of LC resin cement can be achieved with a maximum 1.2 mm of porcelain veneer restoration, the increase of curing time or light intensity is clinically needed for DC resin cements at the thickness of more than 0.9 mm. How to cite this article Cho S-H, Lopez A, Berzins DW, Prasad S, Ahn KW. Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Lightcured and Dual-cured Resin Cements. J Contemp Dent Pract 2015;16(5):347-352.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2341
Author(s):  
Qi Li ◽  
Hong-Lei Lin ◽  
Ming Zheng ◽  
Mutlu Ozcan ◽  
Hao Yu

This study aimed to establish the minimum radiant exposure and irradiance to trigger an adequate polymerization of a photo-polymerized resin cement. In total, 220 disc-shaped specimens (diameter of 10 mm and thickness of 0.1 mm) were fabricated using a photo-polymerized resin cement (Variolink N-transparent, Ivoclar Vivadent). To investigate the minimum radiant exposure, the specimens were polymerized with radiant exposures of 1, 2, 3, 4, 5, 6, and 18 J/cm2 (n = 20). During polymerization, the irradiance was maintained at 200 mW/cm2. To investigate the minimum irradiance, the specimens were polymerized with irradiances of 50, 100, 150, and 200 mW/cm2 (n = 20). During polymerization, the radiant exposure was maintained at the previously determined minimum radiant exposure. The Vickers microhardness (HV) and degree of conversion (DC) of the carbon double bond of the specimens were measured to determine the degree of polymerization of the specimens. The results were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test (p < 0.05). In the investigation of the minimum radiant exposure, the HV and DC of the specimens polymerized with a radiant exposure from 1 to 5 J/cm2 were significantly lower than those with 18 J/cm2 (all p < 0.05). However, no significant difference in HV and DC was found between the specimens polymerized with 6 J/cm2 and 18 J/cm2 (p > 0.05). In the investigation of the minimum irradiance, the specimens polymerized with an irradiance of 50 mW/cm2 had significantly lower HV and DC than the specimens polymerized with an irradiance of 200 mW/cm2 (p < 0.05). However, no significant difference in the HV and DC was found among the specimens cured with irradiances of 100, 150, and 200 mW/cm2 (p > 0.05). In conclusion, the minimum radiant exposure and irradiance to trigger an adequate polymerization of the light-cured resin cement were 6 J/cm2 and 100 mW/cm2, respectively.


2019 ◽  
Vol 18 ◽  
pp. e191451
Author(s):  
Marcio Leandro Von Dreifus Marinho ◽  
Thaís Yumi Umeda Suzuki ◽  
Wirley Gonçalves Assunção ◽  
João Carlos Silos Moraes ◽  
Paulo Henrique dos Santos

Aim The aim of this study is to evaluate the degree of conversion (DC) of resin cements polymerized under different thicknesses of feldspathic dental ceramic. Methods: Forty samples of RelyX ARC and RelyX Veneer resin cements were polymerized under Starlight feldspathic ceramic discs (DeguDent Gmbh) with 0.5 mm, 1.2 mm, 1.8 mm, and 2.4 mm in thickness. The control group was cured without the interposition of ceramic. The DC measurements were performed 10 minutes, 1 hour, and 24 hours after the light-activation in a Nexus 670 FTIR spectrophotometer. Data were analyzed by two-way repeated measure ANOVA and Fisher PLSD test. Results: The RelyX ARC showed higher DC for all ceramic thicknesses. There was significant decrease in DC related to an increase in ceramic thickness. For RelyX ARC, the values of DC obtained after 1 hour and 24 hours did not differ statistically between them, but they were higher than those analyzed after 10 minutes. For RelyX Veneer cement, there was gradual increase in the DC up to 24 hours. Conclusion: The higher the thicknesses of ceramic, the lower DC of the resin cement.


Author(s):  
Mohamed Abdel Rahman Maraghy

Objective: To show the consequence of two thicknesses of ceramic on the polymerization of resin cement light cured when three different lithium silicate ceramics were used. Materials and Methods: 42 ceramic slices were prepared from three types of ceramics, Emax CAD, Celtra Duo CAD and Vita suprinity CAD (n=14). They were further divided into two subgroups according to thicknesses into sub group thickness 0.5mm and sub group thickness 1mm (n=7). Teflon moulds were fabricated with specific dimensions, where the ceramic disc was placed followed by light cured resin cement Bisco choice 2 veneer and a glass slab with finger pressure applied. Curing with Ascent® PX LED light cure unit for 20 seconds took place, where the tip placed over the ceramic sample directly. Cement film was then separated from the ceramic disk and subjected to analysis by Fourier Transform Infrared Spectroscope. Uncured cement samples were also subjected to analysis. Results: Celtra DUO CAD ceramic showed higher degree of polymerization that of Emax and Vita suprinity while the difference between Emax and Suprinity on the degree of polymerization was not significant. Also, ceramic thicknesses had a significant effect on the degree of polymerization of the resin cement. Conclusion: Thickness of ceramics up to 1mm affects the polymerization of resin cement significantly.


2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


2018 ◽  
Vol 43 (6) ◽  
pp. E280-E287 ◽  
Author(s):  
JS Shim ◽  
SH Han ◽  
N Jha ◽  
ST Hwang ◽  
W Ahn ◽  
...  

SUMMARY This study investigated the effects of irradiance and exposure duration on dual-cured resin cements irradiated through ceramic restorative materials. A single light-curing unit was calibrated to three different irradiances (500, 1000, and 1500 mW/cm2) and irradiated to three different attenuating materials (transparent acryl, lithium disilicate, zirconia) with 1-mm thicknesses for 20 or 60 seconds. The changes in irradiance and temperature were measured with a radiometer (or digital thermometer) under the attenuating materials. The degree of conversion (DC) of dual-cure resin cement after irradiation at different irradiances and exposure durations was measured with Fourier transform near infrared spectroscopy. Two-way analysis of variance revealed that irradiance (p&lt;0.001) and exposure duration (p&lt;0.001) significantly affected temperature and DC. All groups showed higher DCs with increased exposure times (p&lt;0.05), but there were no statistically significant differences between the groups irradiated with 1000 mW/cm2 and 1500 mW/cm2 (p&gt;0.05). Higher-intensity irradiances yielded higher temperatures (p&lt;0.05), but exposure time did not affect temperature when materials were irradiated at 500 mW/cm2 (p&gt;0.05).


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


2017 ◽  
Vol 15 (4) ◽  
pp. 258
Author(s):  
Marcelo Giannini ◽  
Andreia Assis Carvalho ◽  
Ariovaldo Stefani ◽  
Wladimir Franco de Sá Barbosa ◽  
Lawrence Gonzaga Lopes

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


2021 ◽  
Vol 46 (1) ◽  
pp. 107-115
Author(s):  
DM De Paula ◽  
AD Loguercio ◽  
A Reis ◽  
S Sauro ◽  
AH Alves ◽  
...  

Clinical Relevance Use of zirconia primers with a low pH and a high acidic monomer concentration should be employed in combination with dual-cure resin cements that are less sensitive to an acidic environment. Primers with lower 10-MDP concentrations attain better outcomes. SUMMARY Objective: To assess the effects of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) included in experimental ceramic primers on the degree of conversion (DC) and microshear bond strength (μSBS) of a dual-cure resin cement, and on the acidity neutralization potential of zirconia (ZrO2) in comparison to hydroxyapatite (HAp). Methods: Experimental ceramic primers were formulated using 5 wt%, 10 wt%, 20 wt%, or 40 wt% 10-MDP as an acidic functional monomer and camphorquinone (CQ)/amine or 1-phenyl-1,2-propanedione (PPD) as a photoinitiator system. Clearfil Ceramic Primer (Kuraray Dental, Tokyo, Japan) was used as the commercial control. Micro-Raman spectroscopy was used to assess the DC of uncured and light-cured resin cements applied onto primer-treated ZrO2 surfaces. The μSBS and pH of primers were assayed in a universal testing machine and by a digital pH meter (Tec-3MP; Tecnal, Piracicaba, Brazil), respectively. Statistical analysis was performed by one-way analysis of variance (ANOVA) and Tukey’s test (p&lt;0.05). Results: DC was not affected until a concentration of 10% 10-MDP in CQ primer and 5% 10-MDP in PPD primer was reached, when compared with the positive control (p&gt;0.05). Groups 10-MDP 5% in CQ and PPD primers showed the highest μSBS compared with the positive control (p&gt;0.05); however, higher concentrations of 10-MDP induced significant DC and μSBS reduction (p&lt;0.05). HAp neutralized 10-MDP primers, but ZrO2 provided higher acidity to the primers’ pH. Conclusion: 10-MDP monomer should be used in low concentrations in ZrO2 primers to avoid reduction of the polymerization and bond strength of resin cement.


Sign in / Sign up

Export Citation Format

Share Document