scholarly journals An introductory study to machine learning and its application to employee turnover prediction

Author(s):  
João Pedro Pazinato Cruz de Oliveira ◽  
Leonardo Tomazeli Duarte

The objective of this paper is to study the problem of employee turnover prediction and to develop a classifier that uses employee's data to identify those who have a greater tendency to leave the company voluntarily. For such purpose, the data of 8724 employees from a real Brazilian beverage company was used to train an Extreme Learning Machine (ELM) classifier, assigning to each sample a weight inversely proportional to the size of the respective class. After the training, the classifier displayed an overall accuracy of 79% of the test data.

Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 523-534
Author(s):  
M. Yasodha ◽  
P. Ponmuthuramalingam

In the present scenario, one of the dangerous disease is cancer. It spreads through blood or lymph to other location of the body, it is a set of cells display uncontrolled growth, attack and destroy nearby tissues, and occasionally metastasis. In cancer diagnosis and molecular biology, a utilized effective tool is DNA microarrays. The dominance of this technique is recognized, so several open doubt arise regarding proper examination of microarray data. In the field of medical sciences, multicategory cancer classification plays very important role. The need for cancer classification has become essential because the number of cancer sufferers is increasing. In this research work, to overcome problems of multicategory cancer classification an improved Extreme Learning Machine (ELM) classifier is used. It rectify problems faced by iterative learning methods such as local minima, improper learning rate and over fitting and the training completes with high speed.


To design an efficient embedded module field-programmable gate array (FPGA) plays significant role. FPGA, a high speed reconfigurable hardware platform has been used in various field of research to produce the throughput efficiently. A now-a-days artificial neural network (ANN) is the most prevalent classifier for many analytical applications. In this paper, weighted online sequential extreme learning machine (WOS-ELM) classifier is presented and implemented in hardware environment to classify the different real-world bench-mark datasets. The faster learning speed, remarkable classification accuracy, lesser hardware resources, and short-event detection time, aid the hardware implementation of WOS-ELM classifier to design an embedded module. Finally, the developed hardware architecture of the WOS-ELM classifier is implemented on a high speed reconfigurable Xilinx Virtex (ML506) FPGA board to demonstrate the feasibility, effectiveness, and robustness of WOS-ELM classifier to classify the data in real-time environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Ju-Young Shin ◽  
Yonghun Ro ◽  
Joo-Wan Cha ◽  
Kyu-Rang Kim ◽  
Jong-Chul Ha

Machine learning algorithms should be tested for use in quantitative precipitation estimation models of rain radar data in South Korea because such an application can provide a more accurate estimate of rainfall than the conventional ZR relationship-based model. The applicability of random forest, stochastic gradient boosted model, and extreme learning machine methods to quantitative precipitation estimation models was investigated using case studies with polarization radar data from Gwangdeoksan radar station. Various combinations of input variable sets were tested, and results showed that machine learning algorithms can be applied to build the quantitative precipitation estimation model of the polarization radar data in South Korea. The machine learning-based quantitative precipitation estimation models led to better performances than ZR relationship-based models, particularly for heavy rainfall events. The extreme learning machine is considered the best of the algorithms used based on evaluation criteria.


Author(s):  
Vivek Sharma S ◽  
Hemalatha R ◽  
Kavyashree Y B

Phishing is that the most typical and most dangerous attack among cybercrimes. The aim of these attacks is to steal the data that’s utilized by people and organizations to perform transactions or any vital info. The goal of this is often to perform an Extreme Learning Machine (ELM) primarily based upon the classification of options together with Phishing Websites information among the UC Irvine Machine Learning Repository information. For results assessment, ELM was compared with different machine learning (SVM), Naive Thomas Bayes (NB) strategies and detected to possess the best possible accuracy.


Author(s):  
Kai Hu ◽  
Zhaodi Zhou ◽  
Liguo Weng ◽  
Jia Liu ◽  
Lihua Wang ◽  
...  

Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous experiences. Among numerous machine learning algorithms, Weighted Extreme Learning Machine (WELM) is one of the famous cases recently. It not only has Extreme Learning Machine (ELM)’s extremely fast training speed and better generalization performance than traditional Neuron Network (NN), but also has the merit in handling imbalance data by assigning more weight to minority class and less weight to majority class. But it still has the limitation of its weight generated according to class distribution of training data, thereby, creating dependency on input data [R. Sharma and A. S. Bist, Genetic algorithm based weighted extreme learning machine for binary imbalance learning, 2015 Int. Conf. Cognitive Computing and Information Processing (CCIP) (IEEE, 2015), pp. 1–6; N. Koutsouleris, Classification/machine learning approaches, Annu. Rev. Clin. Psychol. 13(1) (2016); G. Dudek, Extreme learning machine for function approximation–interval problem of input weights and biases, 2015 IEEE 2nd Int. Conf. Cybernetics (CYBCONF) (IEEE, 2015), pp. 62–67; N. Zhang, Y. Qu and A. Deng, Evolutionary extreme learning machine based weighted nearest-neighbor equality classification, 2015 7th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 2 (IEEE, 2015), pp. 274–279]. This leads to the lack of finding optimal weight at which good generalization performance could be achieved [R. Sharma and A. S. Bist, Genetic algorithm based weighted extreme learning machine for binary imbalance learning, 2015 Int. Conf. Cognitive Computing and Information Processing (CCIP) (IEEE, 2015), pp. 1–6; N. Koutsouleris, Classification/machine learning approaches, Annu. Rev. Clin. Psychol. 13(1) (2016); G. Dudek, Extreme learning machine for function approximation–interval problem of input weights and biases, 2015 IEEE 2nd Int. Conf. Cybernetics (CYBCONF) (IEEE, 2015), pp. 62–67; N. Zhang, Y. Qu and A. Deng, Evolutionary extreme learning machine based weighted nearest-neighbor equality classification, 2015 7th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 2 (IEEE, 2015), pp. 274–279]. To solve it, a hybrid algorithm which composed by WELM algorithm and Particle Swarm Optimization (PSO) is proposed. Firstly, it distributes the weight according to the number of different samples, determines weighted method; Then, it combines the ELM model and the weighted method to establish WELM model; finally it utilizes PSO to optimize WELM’s three parameters (input weight, bias, the weight of imbalanced training data). Experiment data from both prediction and recognition show that it has better performance than classical WELM algorithms.


2020 ◽  
Vol 10 (5) ◽  
pp. 1827 ◽  
Author(s):  
Rodrigo Olivares ◽  
Roberto Munoz ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Diego Cárdenas ◽  
...  

During the last years, highly-recognized computational intelligence techniques have been proposed to treat classification problems. These automatic learning approaches lead to the most recent researches because they exhibit outstanding results. Nevertheless, to achieve this performance, artificial learning methods firstly require fine tuning of their parameters and then they need to work with the best-generated model. This process usually needs an expert user for supervising the algorithm’s performance. In this paper, we propose an optimized Extreme Learning Machine by using the Bat Algorithm, which boosts the training phase of the machine learning method to increase the accuracy, and decreasing or keeping the loss in the learning phase. To evaluate our proposal, we use the Parkinson’s Disease audio dataset taken from UCI Machine Learning Repository. Parkinson’s disease is a neurodegenerative disorder that affects over 10 million people. Although its diagnosis is through motor symptoms, it is possible to evidence the disorder through variations in the speech using machine learning techniques. Results suggest that using the bio-inspired optimization algorithm for adjusting the parameters of the Extreme Learning Machine is a real alternative for improving its performance. During the validation phase, the classification process for Parkinson’s Disease achieves a maximum accuracy of 96.74% and a minimum loss of 3.27%.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Qiong Li ◽  
Tingting Zhao ◽  
Lingchao Zhang ◽  
Wenhui Sun ◽  
Xi Zhao

The morphology of wear particles reflects the complex properties of wear processes involved in particle formation. Typically, the morphology of wear particles is evaluated qualitatively based on microscopy observations. This procedure relies upon the experts’ knowledge and, thus, is not always objective and cheap. With the rapid development of computer image processing technology, neural network based on traditional gradient training algorithm can be used to recognize them. However, the feedforward neural network based on traditional gradient training algorithms for image segmentation creates many issues, such as needing multiple iterations to converge and easy fall into local minimum, which restrict its development heavily. Recently, extreme learning machine (ELM) for single-hidden-layer feedforward neural networks (SLFN) has been attracting attentions for its faster learning speed and better generalization performance than those of traditional gradient-based learning algorithms. In this paper, we propose to employ ELM for ferrography wear particles image recognition. We extract the shape features, color features, and texture features of five typical kinds of wear particles as the input of the ELM classifier and set five types of wear particles as the output of the ELM classifier. Therefore, the novel ferrography wear particle classifier is founded based on ELM.


Sign in / Sign up

Export Citation Format

Share Document