scholarly journals Skrining Aktivitas Antimalaria Beberapa Tanaman Indonesia Hasil Eksplorasi Dari Hutan Raya Cangar, Batu-Malang, Jawa Timur

2017 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Achmad Fuad Hafid ◽  
Nike Puliansari ◽  
Nur Suci Lestari ◽  
Lidya Tumewu ◽  
Abdul Rahman ◽  
...  

Background: Malaria is the most important parasitic disease. Malaria control which depends on specific chemotherapy now complicated by resistance of Plasmodium falciparum to most commonly available antimalarial drug. Such situation has heralded the need for alternative antimalarial therapy. Objective: This research aim was to find new antimalarial candidates from some Indonesia plants collected from Cangar National Forest, Batu-Malang, East Java. Methods: Eleven samples of leaves and stem extracts were screened against Plasmodium falciparum 3D7 culture which maintained in RPMI-1640 Medium. Samples tested in concentration of 0.01, 0.1, 1, 10 and 100 µg/ml. Probit analysis was used to determine IC50. Results: In vitro antimalarial activity revealed that only three crude extracts samples from Fraxinus griffithi stem extract, Piper sulcatum leaves extract and Eucalyptus globulus stem extract had good antimalarial activity with IC50 value of 0.33, 0.20 and 0.55 µg/ml, respectively. Conclusions: Fraxinus griffithi stem extract, Piper sulcatum leaves extract and Eucalyptus globulus stem extract might be a good candidate for antimalarial natural product resources.

2017 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Achmad Fuad Hafid ◽  
Nike Puliansari ◽  
Nur Suci Lestari ◽  
Lidya Tumewu ◽  
Abdul Rahman ◽  
...  

Background: Malaria is the most important parasitic disease. Malaria control which depends on specific chemotherapy now complicated by resistance of Plasmodium falciparum to most commonly available antimalarial drug. Such situation has heralded the need for alternative antimalarial therapy. Objective: This research aim was to find new antimalarial candidates from some Indonesia plants collected from Cangar National Forest, Batu-Malang, East Java. Methods: Eleven samples of leaves and stem extracts were screened against Plasmodium falciparum 3D7 culture which maintained in RPMI-1640 Medium. Samples tested in concentration of 0.01, 0.1, 1, 10 and 100 µg/ml. Probit analysis was used to determine IC50. Results: In vitro antimalarial activity revealed that only three crude extracts samples from Fraxinus griffithi stem extract, Piper sulcatum leaves extract and Eucalyptus globulus stem extract had good antimalarial activity with IC50 value of 0.33, 0.20 and 0.55 µg/ml, respectively. Conclusions: Fraxinus griffithi stem extract, Piper sulcatum leaves extract and Eucalyptus globulus stem extract might be a good candidate for antimalarial natural product resources.


Author(s):  
Endah Setyaningrum ◽  
Achmad Arifiyanto ◽  
Nismah Nukmal ◽  
Titik Nur Aeny ◽  
Meishy Handerlin Putri ◽  
...  

Increasing natural ingredient awareness and utilization has created an increased demand for sources of natural medicinal ingredients, including sources of compound used to treat malaria. Streptomyces is a genus of prokaryote well recognized for its production of antibiotics and other pharmaceutically useful compound. This study aimed to assess the ability of unpurified fermentation metabolites to inhibit Plasmodium parasites. A strain of bacteria identified as Streptomyces hygroscopicus subsp. hygroscopicus strain i18 were isolated from pineapple fields in Lampung province, and was cultured and fermented on liquid synthetic Gause medium for 10 days. The supernatant was separated from the cells and extracted with ethyl acetate-methanol (1:1). Plasmodium falciparum 3D7 was used for antiplasmodial testing. Metabolites were tested qualitatively using a phytochemical approach. Saponins and triterpenoids were found to be present in the extract. Parasite inhibition as measured using probit analysis and yielded an IC50 value of 11.07 g.m/L. These findings suggest further examinations of this extract (e.g. assessment of off-target effects) are warranted.


2017 ◽  
Vol 3 (1) ◽  
pp. 17 ◽  
Author(s):  
Wiwied Ekasari ◽  
Nindya Tresiana ◽  
Suciati Iryani ◽  
Tutik Sri Wahyuni ◽  
Heny Arwaty

Background: Antimalarial screening against nine species of the genus Cassia showed that the methanol extract of leaves Cassia spectabilis have the highest activity. Since it will be used as a traditional medicine, hence it is needed further studies of antimalarial activity of these plants by choosing a safer solvent, namely ethanol. Objective: In vitro anti-malarial activity against Plasmodium falciparum was conducted using the method of Trager and Jensen. Methods: The serial solution tested were: 100, 10, 1,  0.1 and 0.01 µg/ mL, while the in vivo test was performed based on Peter’s test (The days suppressive test) that using P. berghei (strain ANKA) infected mice. Results: The results showed that ethanolic extract of C. spectabilis leaves has inhibitory activity against P. falciparum with IC50 value of 12.52 µg/ mL and against P. berghei with ED50 value of 131.5 mg/kg body weight. Conclusions: A further study to see the potential of ethanol extract from C. Spectabilis leaves as anti-malaria is warranted. 


2017 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
Wiwied Ekasari ◽  
Nindya Tresiana ◽  
Suciati Iryani ◽  
Tutik Sri Wahyuni ◽  
Heny Arwaty

Background: Antimalarial screening against nine species of the genus Cassia showed that the methanol extract of leaves Cassia spectabilis have the highest activity. Since it will be used as a traditional medicine, hence it is needed further studies of antimalarial activity of these plants by choosing a safer solvent, namely ethanol. Objective: In vitro anti-malarial activity against Plasmodium falciparum was conducted using the method of Trager and Jensen. Methods: The serial solution tested were: 100, 10, 1,  0.1 and 0.01 µg/ mL, while the in vivo test was performed based on Peter’s test (The days suppressive test) that using P. berghei (strain ANKA) infected mice. Results: The results showed that ethanolic extract of C. spectabilis leaves has inhibitory activity against P. falciparum with IC50 value of 12.52 µg/ mL and against P. berghei with ED50 value of 131.5 mg/kg body weight. Conclusions: A further study to see the potential of ethanol extract from C. Spectabilis leaves as anti-malaria is warranted. 


Author(s):  
Nuzul Asmilia ◽  
T Armansyah TR ◽  
Dwinna Aliza ◽  
Juli Melia ◽  
Erdiansyah Rahmi ◽  
...  

The aim of this research was to find out in vitro antiplasmodium activity of Malacca leaves (Phyllantus emblica) ethanolic extract against Plasmodium falciparum growth. In this study, Plasmodium culture contained 5% parasitemia in ring stage was cultured using candle jar method and antiplasmodial activity test was carried out using microculture. The treatments were divided into 7 groups with four repetitions. K1 as negative control group was given Roswell Park Memorial Institute (RPMI), while K2 as positive control group was given artesdiaquine. Groups K3, K4, K5, K6, and K7 group was added with 100 µg/mL, 75 µg/mL, 50 µg/mL, 25 µg/mL, and 5 µg/mL of Malacca leaves ethanolic extract, respectively. Antiplasmodial activity was determined by inhibition concentration of 50% parasite growth (IC50). The data were analyzed using ANOVA and followed by Duncan test. The average of parasitemia level in group K1, K2, K3, K4, K5, K6, and K7 were 55.25±15.62, 8.50±2.52, 8.50±3.00, 9.25±0.95, 9.00±2.70, 9.79±2.06, and 10.75±2.22, respectively. The average of inhibition percentage in group K1, K2; K3; K4; K5; K6; and K7 were 0.00±0.00%, 84.62±4.55%; 84.62±5.43%; 83.26±1.73%; 83.71±4,90%; 82.35±3,73%; and 80.54±6.83%, respectively (P0.01). The results showed that the administration of malacca leaves ethanolic extract significantly affect (P0.01) the inhibition of Plasmodium growth as compared to group K1 (negative control). Probit analysis reveals the IC50 value was 3.889 µg/mL. In conclusion, all doses of malacca leaves ethanolic extract used in this study was able to inhibit Plasmodium falciparum growth with IC50 value was 3.889 µg/mL.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


1996 ◽  
Vol 40 (9) ◽  
pp. 2094-2098 ◽  
Author(s):  
B Pradines ◽  
F Ramiandrasoa ◽  
L K Basco ◽  
L Bricard ◽  
G Kunesch ◽  
...  

The activities of novel iron chelators, alone and in combination with chloroquine, quinine, or artemether, were evaluated in vitro against susceptible and resistant clones of Plasmodium falciparum with a semimicroassay system. N4-nonyl,N1,N8-bis(2,3-dihydroxybenzoyl) spermidine hydrobromide (compound 7) demonstrated the highest level of activity: 170 nM against a chloroquine-susceptible clone and 1 microM against a chloroquine-resistant clone (50% inhibitory concentrations). Compounds 6, 8, and 10 showed antimalarial activity with 50% inhibitory concentrations of about 1 microM. Compound 7 had no effect on the activities of chloroquine, quinine, and artemether against either clone, and compound 8 did not enhance the schizontocidal action of either chloroquine or quinine against the chloroquine-resistant clone. The incubation of compound 7 with FeCI3 suppressed or decreased the in vitro antimalarial activity of compound 7, while no effect was observed with incubation of compound 7 with CuSO4 and ZnSO4. These results suggest that iron deprivation may be the main mechanism of action of compound 7 against the malarial parasites. Chelator compounds 7 and 8 primarily affected trophozoite stages, probably by influencing the activity of ribonucleotide reductase, and thus inhibiting DNA synthesis.


2018 ◽  
Vol 34 (2) ◽  
pp. 655-662 ◽  
Author(s):  
Ade Arsianti ◽  
Hendry Astuti ◽  
Fadilah Fadilah ◽  
Daniel Martin Simadibrata ◽  
Zoya Marie Adyasa ◽  
...  

2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1452
Author(s):  
Carolina C. Hoff ◽  
Mauro F. Azevedo ◽  
Adriana B. Thurler ◽  
Sarah El Chamy Maluf ◽  
Pollyana M. S. Melo ◽  
...  

Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.


Sign in / Sign up

Export Citation Format

Share Document