scholarly journals The use of laser radiation to increase the efficiency of nitriding processes

Author(s):  
Alnusirat Walid ◽  
Leonid Golovko ◽  
Viktor Romanenko ◽  
Mikhailo Bloshchytsyn

In this study, the technology of laser processing is tested. This combined process of laser chemical-thermal treatment allows by modifying the structures of the surface layers of metal alloys to significantly increase the thickness range of high-quality nitrided layers with a radical reduction in time and energy consumption of the process, significantly expand their applications to increase wear resistance, corrosion resistance and other performance characteristics.

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1130 ◽  
Author(s):  
Aneta Bartkowska

The paper presents the study results of laser remelting diffusion boronized layers produced on CT90 tool steel. A diffusion boronized layer was produced at 950 °C in a powder mixture containing boron carbide as a source of boron. A needle-like microstructure of iron boride was obtained. After diffusion boronizing, the specimens were subjected to laser processing, which was carried out using a diode laser with a nominal power of 3 kW. Three laser beam power values were applied (600, 900, and 1200 W). The aim of the study was to investigate the microstructure, microhardness, chemical, and phase composition as well as the wear and corrosion resistance of newly formed FeB-Fe2B-Fe3(B,C) layers. As a result of the laser beam interaction, the needle-like borides occurring in the subsurface zone were remelted, and three characteristic areas were obtained: the remelted zone, the heat-affected zone, and the substrate. The properties of newly formed layers have improved in comparison to diffusion boronized layers (except for corrosion resistance). It should be noted that using the highest laser beam power contributed to a slight reduction in wear resistance. Both the reduced corrosion and wear resistance were caused by greater remelting of the steel substrate and thus by the increased iron content in the formed layer.


2020 ◽  
Vol 8 (5) ◽  
pp. 2942-2944

BALINI ALNOVA enhanced wear resistance as well as increased corrosion resistance and warm hardness makes this new coating the choice for end mill. The service life of BALINIT ALNOVA coated end mills is up to 30 times longer compared to other high coatings. Performance coating with BALINIT ALNOVA we can machine challenging material High performance and high quality. AlCrN is the coating material and the coating structure is multilayer.


2018 ◽  
Vol 284 ◽  
pp. 242-246
Author(s):  
Yu.S. Bakhracheva

This article examines the influence of laser heat treatment of nitrocementation steel on the phase composition, structure and hardness of surface layers. It is shown that the combined heat treatment of steels – nitrocementation and laser hardening allows to provide high wear resistance of surface layers of steel.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Alloy Digest ◽  
1969 ◽  
Vol 18 (12) ◽  

Abstract AISI C1060 is a high-carbon water or oil hardening tool and spring steel recommended for heavy machinery parts, shafts, springs and miscellaneous tools requiring strength and wear resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: CS-32. Producer or source: Carbon and alloy steel mills.


Alloy Digest ◽  
1980 ◽  
Vol 29 (3) ◽  

Abstract AMPCOLOY 570 is a cast copper-nickel-aluminum-cobalt-iron alloy specially developed for applications involving severe stresses and high temperatures, such as glass-making molds and plate-glass rolls. It is significantly superior to cast iron which has been commonly used for glass-making molds. Good foundry techniques will yield high-quality castings of Ampcoloy 570 in a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-392. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (12) ◽  

Abstract Copper Alloy No. 878 is a copper-zinc-silicon alloy for die castings. Among the brass die-casting alloys, it has the highest strength, hardness and wear resistance; however, it is the most difficult to machine. It is used where very high requirements must be met for strength and wear resistance. Its many applications include tools, pump impellers, gears and marine hardware. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-386. Producer or source: Copper alloy producers.


Alloy Digest ◽  
2009 ◽  
Vol 58 (9) ◽  

Abstract Carpenter ACUBE 100 Alloy is cobalt-base and exhibits corrosion resistance and wear resistance. The alloy was designed as direct replacement of beryllium copper alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: CO-117. Producer or source: Carpenter Specialty Alloys.


Sign in / Sign up

Export Citation Format

Share Document