scholarly journals Evaluation of Selection Indices in Screening Durum Wheat Genotypes Combining Drought Tolerance and High Yield Potential

Author(s):  
J.M. Patel ◽  
A.S. Patel ◽  
C.R. Patel ◽  
H.M. Mamrutha ◽  
Sharma Pradeep ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 454 ◽  
Author(s):  
Alejandro del Pozo ◽  
Iván Matus ◽  
Kurt Ruf ◽  
Dalma Castillo ◽  
Ana María Méndez-Espinoza ◽  
...  

In Chile, durum wheat is cultivated in high-yielding Mediterranean environments, therefore breeding programs have selected cultivars with high yield potential in addition to grain quality. The genetic progress in grain yield (GY) between 1964 and 2010 was 72.8 kg ha−1 per year. GY showed a positive and significant correlation with days to heading, kernels per unit ground area and thousand kernel weight. The gluten and protein content tended to decrease with the year of cultivar release. The correlation between the δ13C of kernels and GY was negative and significant (−0.62, p < 0.05, for all cultivars; and −0.97, p < 0.001, excluding the two oldest cultivars). The yield progress (genetic plus agronomic improvements) of a set of 40–46 advanced lines evaluated between 2006 and 2015 was 569 kg ha−1 per year. Unlike other Mediterranean agro-environments, a longer growing cycle together with taller plants seems to be related to the increase in the GY of Chilean durum wheat during recent decades.


2018 ◽  
Vol 10 (3) ◽  
pp. 439-446
Author(s):  
Irfan ERDEMCI

Among abiotic stresses, drought is undoubtedly one of the most important ones, that have great impact on crop growth and productivity worldwide. Therefore, identifying of plants' performance against drought stress and estimating drought tolerance become a necessary part of the breeding phase. The main purpose of the present study was to investigate the effect of several indices that combine drought tolerance and high yield potential in chickpea. The trials were conducted under both stressed and no-stressed environments for two growing seasons (2015/2016-2016/2017) in Southeast Anatolia Region of Turkey. Varyans analysis results showed that there were significant differences among genotypes regarding Yp, Ys, MP, MRP, GMP, REI, STI, MISTIk 1, MISTIk 2, HM, YI, PI, ATI, SNPI and RDY. The genotypes FLIP09-51C, FLIP97-503C and FLIP06-97C had high yield under non-stressed condition, while the genotypes FLIP09-51C, FLIP06-97C and ‘Aksu’ displayed high amount under stressed condition. Thus, the genotypes FLIP09-51C and FLIP06-97C were found as good candidates for commercial recommendation in both conditions. Spearman rank correlation matrix showed that drought indices were significantly related to each other. The yields in stress and no-stress conditions (Yp and Ys) showed a significant and positive correlation with MP, MRP, GMP, REI, STI, MSTIK1, MSTIK2 and HM and showed a negative correlation with PI and RDY. As a result, it has been found that MISTIK2, DI, HM, STI and YI can be used as optimal indicators for screening drought-tolerant genotypes, while FLIP09-51C, FLIP06-97C, EN934 and ‘Aksu’ varieties have been the most tolerant genotypes in terms of these indices examined in study.


2019 ◽  
Vol 28 (03) ◽  
pp. 56-60
Author(s):  
Ganbaatar B ◽  
Batbold S

Selection for drought tolerance typically involves evaluating genotypes for either high yield potential or stable performance under drought stress. In order to select drought tolerant varieties of bread wheat an experiment was conducted in a randomized complete block design (RCBD) with two replications during the growing season 2014-2018. Eight drought tolerance indices including stress tolerance index (STI), geometric mean productivity (GMP), mean productivity index (MP), stress susceptibility index (SSI), tolerance index (TOL), yield index (YI), yield stability index (YSI) and drought resistance index (DI) were calculated and adjusted based on grain yield under drought years (Ys) and favorable years (Yp). Result of study showed significant positive correlation between grain yield in the stress condition (Ys) with indicators STI, GMP, TOL, MP, and DI, accordingly they are discriminating drought tolerant genotypes at the same manner. Wheat varieties Darkhan-172, Darkhan-72, Altaiskaya-325, Altaiskaya-70, Darkhan-181 has a high yield potential. Genotypes Darkhan-160, Arvin, Darkhan-144 most droughts tolerant and can be use in wheat breeding for improving drought resistance. Зусах зөөлөн буудайн сортуудыг ган тэсвэрийнүнэлэмжээр үнэлсэн дүнгээс Судалгаагаар манай оронд өргөн тариалагдаж байгаа өөрийн орны селекцээр гаргасан болон гадаадын нийт 20 сортонд ган тэсвэрийн индекс:стресс тэсвэрийн индекс (SТI), тэсвэрийн индекс (TOL),стресс мэдрэмжийн индекс (SSI), ган тэсвэрийн индекс (DI)-ээрүнэлгээ өгсөн. Зусах зөөлөн буудайн ургац ба ган тэсвэрийн индексүүдийн хооронд эерэг нягт хамааралыг тогтоосон. Чийгийн хангамж сайтай жилд потенциаль ургацаар буудайн эртийн болцтой Дархан-172, дунд-эртийн болцтой Дархан-72, Алтайская-325, Алтайская-70, дунд оройн болцтой Дархан-181 сортууд шалгарсан ба эдгээр сортуудыг селекцид хагас эрчимжсэн сорт гаргахад ашиглаж болно. Ган тэсвэр өндөртэй сортыг бий болгоходселекцид эртийн болцтой Дархан-160, дунд-эртийн болцтой Арвин, дунд оройн болцтой Дархан-144 сортуудыг эх материалаар ашиглаж болно. Зусах буудайн Дархан-144 сорт нь гадаад орчны нөхцөлд дасан зохицох чадвар сайтай сортоор шалгарав. Түлхүүр үг: болц,сорт, ургац, стресс, индекс


EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1992
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali-Maltouf ◽  
Jan Valkoun ◽  
...  

Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi, S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The combined analysis of variance showed the highly significant effects of genotypes, environments, and genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha), heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four wild parents combined productivity and stability, making them suitable for unpredictable climatic conditions. A significant advantage in yield and stability was observed in Haurani derivatives compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5 derivatives; they had improved yield under unfavorable environments while maintaining the high yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a breeding pipeline. Comparing different stability approaches showed that some of them can be used interchangeably; others can be complementary to combine broad adaption with higher yield.


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


Sign in / Sign up

Export Citation Format

Share Document