scholarly journals Design of Ultrasonic Transducer for Secondary Wave Generations with High Directivity

2019 ◽  
Vol 24 (4) ◽  
pp. 744-748
Author(s):  
Chol-Hak Kim ◽  
Myong-Jin Kim ◽  
Chol-Su Ri

In this paper, we described a method of designing ultrasonic transducer which simultaneously radiates two finite-amplitude ultrasonic waves to produce the secondary waves with high directivity. For nonlinear effects, it is necessary that the frequencies of two primary waves are coincident with natural frequencies of the ultrasonic transducer. The main problem here is to predict the resonance frequencies of the first mode as well as higher modes. While the first resonance frequency of the transducer can be estimated easily, it is not trivial to do higher ones. When the length of transducer is much greater than its diameter, this problem is reduced to one-dimensional and higher mode frequencies are nothing but multiples of the first mode frequency. However, such a case is seldom encountered. Using the transfer matrix method, we obtained the resonance frequencies of the transducer analytically and compared these with numerical results from the simulation. The theoretical and simulation results are in good agreement with the difference of 3--6 kHz.

2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


1974 ◽  
Vol 16 (4) ◽  
pp. 268-275 ◽  
Author(s):  
G. H. Trengrouse

The attenuation of large-amplitude waves effected by silencers of the so-called Helmholtz-resonator type is envisaged as being due to the finite efflux of gas through the holes of the silencer with resulting partial reflection, and hence reduced transmission, of the incident wave. Quasi-steady, one-dimensional flow arguments are used to predict the attenuation, the flow conditions being assumed reversible and adiabatic, that is, isentropic. This latter assumption is avoided in an alternative method by assuming a knowledge of the relationship between pipe Mach numbers and the pressure difference in the pipe across the holes. Indicator diagrams resulting from single pulse experiments are, in general, in good agreement with those predicted.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 580 ◽  
Author(s):  
Xiangdi Meng ◽  
Shuyu Lin

To increase the ultrasonic intensity and power of a piezoelectric transducer, a cascaded piezoelectric ultrasonic transducer with the three sets of piezoelectric ceramic stacks is analyzed. The cascaded piezoelectric ultrasonic transducer consists of four metal cylinders and three sets of piezoelectric ceramic stacks in the longitudinal direction. In analysis, the electromechanical equivalent circuit of the cascaded piezoelectric ultrasonic transducer is obtained, as well as the resonance/anti-resonance frequencies equations. By means of an analytical method, when the position of piezoelectric ceramic stacks PZT-2/PZT-3 changes, the resonance/anti-resonance frequencies and the effective electromechanical coupling coefficient of the cascaded piezoelectric ultrasonic transducer have certain characteristics. Several prototypes of the cascaded piezoelectric ultrasonic transducer are manufactured. The experimentally measured resonance frequencies are in good agreement with the theoretical and simulated results. The cascaded piezoelectric ultrasonic transducer with three sets of piezoelectric ceramic stacks presented in this paper is expected to be used in the field of high power ultrasound.


2011 ◽  
Vol 22 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Pezhman A. Hassanpour ◽  
William L. Cleghorn ◽  
Ebrahim Esmailzadeh ◽  
James K. Mills

The experiment results on the resonance frequencies of micro-bridge resonators with attached electrostatic comb-drives are reported in this article. The resonators include a novel design of asymmetric resonators, in which the comb-drives are attached to off-midpoint of the beam. The experiment results confirm that by properly designing the location and mass of the comb-drives, the natural frequencies can exceed those of conventional symmetric resonators. Moreover, it has been shown that the second mode of vibration of asymmetric resonators, in contrast to that of symmetric resonators, can be excited, hence exploited for applications in which multiple working frequencies are desired. The experiment results are in good agreement with the analytical model. The deviations between these two are discussed in detail.


1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, a computational study is performed in order to clarify the possible magnetic nature of gold. For such purpose, gas phase Au<sub>2</sub> (zero charge) is modelled, in order to calculate its gas phase formation enthalpy. The calculated values were compared with the experimental value obtained by means of Knudsen effusion mass spectrometric studies [5]. Based on the obtained formation enthalpy values for Au<sub>2</sub>, the compound with two unpaired electrons is the most probable one. The calculated ionization energy of modelled Au<sub>2</sub> with two unpaired electrons is 8.94 eV and with zero unpaired electrons, 11.42 eV. The difference (11.42-8.94 = 2.48 eV = 239.29 kJmol<sup>-1</sup>), is in very good agreement with the experimental value of 226.2 ± 0.5 kJmol<sup>-1</sup> to the Au-Au bond<sup>7</sup>. So, as expected, in the specie with none unpaired electrons, the two 6s<sup>1</sup> (one of each gold atom) are paired, forming a chemical bond with bond order 1. On the other hand, in Au<sub>2</sub> with two unpaired electrons, the s-d hybridization prevails, because the relativistic contributions. A molecular orbital energy diagram for gas phase Au<sub>2</sub> is proposed, explaining its paramagnetism (and, by extension, the paramagnetism of gold clusters and nanoparticles).</p>


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2021 ◽  
pp. 147592172199847
Author(s):  
William Soo Lon Wah ◽  
Yining Xia

Damage detection methods developed in the literature are affected by the presence of outlier measurements. These measurements can prevent small levels of damage to be detected. Therefore, a method to eliminate the effects of outlier measurements is proposed in this article. The method uses the difference in fits to examine how deleting an observation affects the predicted value of a model. This allows the observations that have a large influence on the model created, to be identified. These observations are the outlier measurements and they are eliminated from the database before the application of damage detection methods. Eliminating the outliers before the application of damage detection methods allows the normal procedures to detect damage, to be implemented. A multiple-regression-based damage detection method, which uses the natural frequencies as both the independent and dependent variables, is also developed in this article. A beam structure model and an experimental wooden bridge structure are analysed using the multiple-regression-based damage detection method with and without the application of the method proposed to eliminate the effects of outliers. The results obtained demonstrate that smaller levels of damage can be detected when the effects of outlier measurements are eliminated using the method proposed in this article.


Sign in / Sign up

Export Citation Format

Share Document