Effects of cluster thinning and irrigation amount on water relations, growth, yield and fruit and wine composition of Tempranillo grapes in Extemadura (Spain)

OENO One ◽  
2009 ◽  
Vol 43 (2) ◽  
pp. 67 ◽  
Author(s):  
María Esperanza Valdés ◽  
Daniel Moreno ◽  
Esther Gamero ◽  
David Uriarte ◽  
María Del Henar Prieto ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: The effects of cluster thinning and irrigation regime on vine performance and grape and wine quality of Tempranillo grapevines were studied in a field experiment carried out in Extremadura in Spain.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Treatments were combinations of two irrigation doses (25% and 100% of estimated crop evapotranspiration) and two crop levels (thinned and unthinned vines). Cluster thinning was performed just before veraison to retain five clusters per m2 of vine leaf area. Results showed that irrigation amount produced important differences in stem water potential, leaf area index and berry growth but cluster thinning did not significantly affect these parameters. However, cluster thinning independently of the irrigation amount, advanced by seven days grape maturity and largely affected the main grape quality parameters, increasing total soluble solids concentration, pH, total anthocyanins and phenolic content and reduced must yield. Wines made from grapes of the thinned treatments also had higher contents of anthocyanins, tanins and colour index. This increasing effect was more noticeable in the lower irrigation dose. Similarly, the higher irrigation amount reduced phenolic content of wines.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Both, lower irrigation rates and cluster thinning, despite decreased yield, improved wine composition. Overall thinning had a larger impact on grape and wine composition than irrigation.</p><p style="text-align: justify;"><strong>Significance and impact of study</strong>: In the semi-arid environment of the Extremadura region of Spain, irrigation in Tempranillo is important to obtain economically sound yield. However, the irrigation dose to apply might vary depending on the desired wine style. Irrigation to replace potential evapotranspiration should be avoided for premium wine production and, in these cases; deficit irrigation is probably preferred as a tool to increase yields but minimizing the negative effects on fruit and wine quality. Cluster thinning, performed just before veraison, can be also applied to accelerate ripening improving the overall fruit phenolic composition.</p>

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1485 ◽  
Author(s):  
Alisheikh A. Atta ◽  
Kelly T. Morgan ◽  
Said A. Hamido ◽  
Davie M. Kadyampakeni ◽  
Kamal A. Mahmoud

The decrease in the rate of inflow and outflow of water—and thereby the uptake of plant nutrients as the result of Huanglongbing (HLB or citrus greening)—leads to a decline in overall tree growth and the development of nutrient deficiencies in HLB-affected citrus trees. This study was conducted at the University of Florida, Southwest Florida Research and Education Center (SWFREC) near Immokalee, FL from January 2017 through December 2019. The objective of the study was to determine the effect of rootstocks, nutrient type, rate, and frequency of applications on leaf area index (LAI), water relations (stomatal conductance [gs], stem water potential [Ψw], and sap flow), soil nutrient accumulation, and dynamics under HLB-affected citrus trees. The experiment was arranged in a split-split plot design that consisted of two types of rootstocks, three nitrogen (N) rates, three soil-applied secondary macronutrients, and an untreated control replicated four times. LAI significantly increased in response to the secondary macronutrients compared with uncontrolled trees. A significantly greater gs, and thus a decline in Ψw, was a manifestation of higher sap flow per unit LA (leaf area) and moisture stress for trees budded on Swingle (Swc) than Cleopatra (Cleo) rootstocks, respectively. The hourly sap flow showed significantly less water consumption per unit LA for trees that received a full dose of Ca or Mg nutrition than Ca + Mg treated and untreated control trees. The soil nutrient concentrations were consistently higher in the topmost soil depth (0–15 cm) than the two lower soil depths (15–30 cm, 30–45 cm). Mobile nutrients: soil nitrate–nitrogen (NO3-N) and Mg2+ Mg2+, Mn2+, Zn2+, and B leached to the lower soil (15–30 cm) depth during the summer season. However, the multiple split applications of N as Best Management Practices (BMPs) and optimum irrigation scheduling based on reference evapotranspiration (ETo) maintained soil available N (ammonium nitrogen [NH4-N] and NO3-N) below 4.0 mg kg−1, which was a magnitude 2.0–4.0× less than the conventional N applications. Soil NH4-N and NO3-N leached to the two lower soil depths during the rainy summer season only when trees received the highest N rate (280 kg ha−1), suggesting a lower citrus N requirement. Therefore, 224 kg ha−1 N coupled with a full Ca or Mg dose could be the recommended rate for HLB-affected citrus trees.


HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 916-921 ◽  
Author(s):  
Said A. Hamido ◽  
Kelly T. Morgan ◽  
Robert C. Ebel ◽  
Davie M. Kadyampakeni

Because of the decline in production and negative economic effects, there is an urgent need for strategies to reduce the impact of Huanglongbing (HLB) on citrus [Citrus ×sinensis (L.) Osbeck]. The objective of this study was to evaluate the impact of different irrigation schedules on total available soil water (TAW) and water uptake characteristics of citrus trees affected by HLB in central and southwest Florida. The study was initiated in Jan. 2014 for 2 years on 5-year-old sweet orange trees located in three commercial groves at Arcadia, Avon Park, and Immokalee, FL. Each grove had three irrigation scheduling treatments including the University of Florida, Institute of Food and Agricultural Sciences (UF/IFAS) recommendations, Daily irrigation, and an Intermediate treatment. All groves received similar volumes of water per week based on evapotranspiration (ETo) reported by the Florida Automated Weather Network. Sap flow (SF) measurements were taken for two trees per treatment for at least 10 days per site (twice/year). During those periods, leaf area, leaf area index (LAI), and stem water potential (Ψ) were determined. Also, TAW was determined using drainage curve and capacitance soil moisture sensors installed at incremental soil depths of 0–15, 15–30, and 30–45 cm. Results showed significant differences in average SF, LAI, Ψ, and TAW measurements among treatments. Diurnal SF value under daily irrigation treatment increased by 91%, 51%, and 105% compared with UF/IFAS irrigation in Arcadia, Avon Park, and Immokalee, respectively. Soil water contents (WCs) under daily treatment increased by 59%, 59%, and 70% compared with UF/IFAS irrigation treatment in Arcadia, Avon Park, and Immokalee, respectively. Our results indicated that daily irrigation improved tree water dynamics compared with IFAS or Intermediate irrigation scheduling treatments and reduced tree stress with the same volume of water.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Nguyen Phuoc Minh

Karanda (Carissa carandas L.) is an underutilized fruit with plenty therapeutic and functional properties. In fermentation, yeast metabolites soluble solids in fruit juice to produce energy, ethanol and carbon dioxide. The present research aimed to examine various parameters such as temperature, pH, sugar addition and inoculum size in the primary fermentation, and aging time in storage affecting to karanda wine quality. This research was conducted from 2019 to 2020. Results showed that supplementation of sugar 9 %, pH 3.6, temperature 28 oC, inoculum size 14% and aging in 10 weeks, karanda wine obtained high ethanol content (8.19±0.02 % v/v), total phenolic content (184.32±1.17 mg GAE/100 g) and overall acceptability (8.01±0.02). Wine from this valuable karanda fruit would be beneficial for health by moderate consumption.


2012 ◽  
Vol 18 (1) ◽  
Author(s):  
I. Fazekas ◽  
J. Göblyös ◽  
Gy. D. Bisztray ◽  
G. Zanathy

The cluster thinning is a method of the yield regulation.With the removal one part of the clusters, the yield pro leaf area will be lower, hereby the grape and wine quality will be improved. The regulation of the yield can lead to further advantages: the ratio of the vegetative and generative performance of the vines will improve, the condition of the plants will better, the number of the physiological diseases can be reduced and the growth of the shoots and roots can be promoted. The grape growers make the cluster thinning almost exclusive by creating one cluster shoots. Usually the upper clusters are removed, because the sugar content of these second or third clusters will be lower. The cluster thinning is an easy task, can be done without special skills. It is an effective method improving wine quality, but its use can lead to other problems. The grapes try to compensate the removed clusters. Therefore the clusters will be bigger and thicker, but more sensitive to bunch rot. Moreover the treatment is expensive, because it needs manual work. It is worth to get acquainted and try the new yield regulation methods, which can help to avoid the occurring problems. Our aim is to show the results of our experiment, which was carried out in Eger, examining the red grape cultivar Kékfrankos. During our 4 years long experiment we compared the effects of cluster thinning, cluster shredding, cluster tipping and defoliation at the flowering, on the vegetative and generative vine performance.


2009 ◽  
Vol 66 (4) ◽  
pp. 436-446 ◽  
Author(s):  
Claudia Rita de Souza ◽  
Luís Henrique Bassoi ◽  
José Moacir Pinheiro Lima Filho ◽  
Fabrício Francisco Santos da Silva ◽  
Leandro Hespanhol Viana ◽  
...  

There is an increased demand for high quality winegrapes in the São Francisco Valley, a new wine producing area in Brazil. As the grape quality is closely linked to the soil water status, understanding the effects of rootstock and irrigation management on grapevine water relations is essential to optimize yield and quality. This study was carried out to investigate the effects of irrigation strategies and rootstocks on water relations and scion vigour of field-grown grapevines in Petrolina, Pernambuco state, Brazil. The cultivars used as scions are Moscato Canelli and Syrah, both grafted onto IAC 572 and 1103 Paulsen rootstocks. The following water treatments were used: deficit irrigation, with holding water after veraison; and partial root-zone drying, supplying (100% of crop evapotranspiration) of the water loss to only one side of the root system after fruit set, alternating the sides periodically (about 24 days). In general, all treatments had values of pre-dawn leaf water potential higher than -0.2 MPa, suggesting absence of water stress. The vine water status was more affected by rootstock type than irrigation strategies. Both cultivars grafted on IAC 572 had the highest values of midday leaf water potential and stem water potential, measured on non-transpiring leaves, which were bagged with both plastic sheet and aluminum foil at least 1 h before measurements. For both cultivars, the stomatal conductance (g s), transpiration (E) and leaf area index (LAI) were also more affected by roostsotck type than by irrigation strategies. The IAC 572 rootstock presented higher g s, E and LAI than the 1103 Paulsen. Differences in vegetative vigor of the scion grafted onto IAC 572 rootstocks were related to its higher leaf specific hydraulic conductance and deeper root system as compared to the 1103 Paulsen, which increased the water-extraction capability, resulting in a better vine water status.


Author(s):  
Robert E. White

The first edition of Understanding Vineyard Soils has been praised for its comprehensive coverage of soil topics relevant to viticulture. However, the industry is dynamic--new developments are occurring, especially with respect to measuring soil variability, managing soil water, possible effects of climate change, rootstock breeding and selection, monitoring sustainability, and improving grape quality and the "typicity" of wines. All this is embodied in an increased focus on the terroir or "sense of place" of vineyard sites, with greater emphasis being placed on wine quality relative to quantity in an increasingly competitive world market. The promotion of organic and biodynamic practices has raised a general awareness of "soil health", which is often associated with a soil's biology, but which to be properly assessed must be focused on a soil's physical, chemical, and biological properties. This edition of White's influential book presents the latest updates on these and other developments in soil management in vineyards. With a minimum of scientific jargon, Understanding Vineyard Soils explains the interaction between soils on a variety of parent materials around the world and grapevine growth and wine typicity. The essential chemical and physical processes involving nutrients, water, oxygen and carbon dioxide, moderated by the activities of soil organisms, are discussed. Methods are proposed for alleviating adverse conditions such as soil acidity, sodicity, compaction, poor drainage, and salinity. The pros and cons of organic viticulture are debated, as are the possible effects of climate change. The author explains how sustainable wine production requires winegrowers to take care of the soil and minimize their impact on the environment. This book is a practical guide for winegrowers and the lay reader who is seeking general information about soils, but who may also wish to pursue in more depth the influence of different soil types on vine performance and wine character.


HortScience ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 318-328 ◽  
Author(s):  
Alison L. Reeve ◽  
Patricia A. Skinkis ◽  
Amanda J. Vance ◽  
Katherine R. McLaughlin ◽  
Elizabeth Tomasino ◽  
...  

Growers of high-end ‘Pinot noir’ wine grapes (Vitis vinifera L.) commonly reduce yield by cluster thinning with the goal of increasing fruit quality; however, there are no objectively defined yield targets to achieve optimum fruit composition. Canopy leaf area relative to fruit yield can affect total soluble solids (TSS), and recommendations have been established for warm wine grape production regions. However, the relationship between leaf area and photoassimilation differs among climates and training systems. Leaf area to yield (LA:Y) ratios developed in warm, arid regions may not be suitable for cool, wet regions such as western Oregon. A 3-year field study was conducted to elucidate relationships between canopy to yield ratios and berry composition for ‘Pinot noir’. Vegetative growth and fruit yield were manipulated through competitive cover cropping and cluster thinning. Growth was manipulated in three ways: perennial red fescue (Festuca rubra L.) was grown in 1) both (Grass), 2) one (Alternate), or 3) neither (Tilled) of the alleyways flanking the vine row. Within each vineyard floor treatment, fruit clusters were thinned to one per shoot (Half Crop) or vines were left unthinned (Full Crop). Floor management influenced both canopy size and yield because of altered vine nitrogen (N) status. Effects of crop load on berry components were not always consistent between the crop load metrics used [yield to pruning weight (Y:PW) ratio or LA:Y]. In 2 years, TSS reached a maximum at similar LA:Y; however, this did not necessarily produce optimum TSS. Yield had the greatest influence on pH and total anthocyanins (ACY) in the highest yielding, coolest year. Crop load metrics were not reliable predictors of TSS because of the dominant effect of seasonal variation. Relationships between canopy to yield metrics and other berry components were partially explained by tissue N, photosynthetic photon flux (PPF) through the cluster zone, and/or yield. Cluster thinning to adjust yields may not alter source to sink relationships or canopy to yield ratios enough to overcome ripening limitations in cool climates. Only one wine vintage had sensory differences with Alternate-Half Crop and Alternate-Full Crop wines ranked high quality and Tilled-Half Crop and Tilled-Full Crop wines ranked low quality by both consumer and winemaker panels. Therefore, cluster thinning may have limited impact on wine sensory properties.


2002 ◽  
Vol 127 (4) ◽  
pp. 628-634 ◽  
Author(s):  
A. Naor ◽  
Y. Gal ◽  
B. Bravdo

Effects of two shoot densities (14 and 44 shoots/vine) and two crop levels (one and two fruit clusters per shoot) on yield, pruning weight, crop load, and juice and wine quality of field-grown `Sauvignon blanc' grape (Vitis vinifera L.) were studied in a factorial experiment over 3 years. Main shoot length, lateral shoot length and number, shoot diameter, leaf area per shoot, and specific leaf weight were greater at the lower compared with the higher shoot density for all years whereas pruning weight was significantly increased only in the third year. Crop yield increased proportionally with the number of clusters, up to 44 clusters per vine, by both shoot and cluster thinning; a lower rate of yield increase was apparent when the number of clusters per vine was increased further, probably because of increasing source limitation. Berry maturation was delayed in the 44 shoots per vine treatment. Unchanged soluble solids, higher total acidity, and lower pH in the 44-shoot vine treatment in the third year indicated that the effect of cluster number on the must quality was not due to delayed maturation. No effect of cluster number per shoot on vegetative parameters was apparent. Berry size and number were affected by cluster thinning only in the 44 shoot/vine treatment. Both the number of shoots per vine and the number of clusters per shoot affected wine sensory attributes. Herbaceous aroma scores increased with increasing pruning weight. The wine sensory evaluation score decreased with increasing crop load. Total wine sensory scores decreased with decreasing leaf area to fruit weight ratio below ≈18 cm2·g-1, whereas a critical value of the crop to pruning weight ratio, for wine quality, was not apparent. Crop load expressed as crop to pruning weight ratio (kg·kg-1) was highly correlated with fruit weight to leaf area ratio (g·cm-2) (r2 = 0.86), providing a biological rationale for the relevance of crop load and wine quality relations.


Sign in / Sign up

Export Citation Format

Share Document