scholarly journals A thousand words about microparticles in cardiology

2014 ◽  
Vol 83 (2) ◽  
pp. 189-193
Author(s):  
Magda Konkolewska ◽  
Szczepan Kurc ◽  
Ewa Stępień

Microparticles (MPs) are membrane vesicles of 0.1–1 µm in diameter produced mainly by platelets, vascular endothelium and blood cells in response to cell activation and stress factors. MPs can be also released during malignant transformation or apoptosis. The essential step in MP formation is the loss of the cell membrane asymmetric phospholipid distribution as response to the increased intracellular calcium levels. MPs contain, proteins and genetic material (DNA, miRNA, mRNA) which enables them to interact and influence target cell. MPs are considered to be markers of ongoing pathophysiological processes in cardiovascular system, due to their role in inflammation and coagulation.

Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Marilyn J. Telen

AbstractA number of lines of evidence now support the hypothesis that vaso-occlusion and several of the sequelae of sickle cell disease (SCD) arise, at least in part, from adhesive interactions of sickle red blood cells, leukocytes, and the endothelium. Both experimental and genetic evidence provide support for the importance of these interactions. It is likely that future therapies for SCD might target one or more of these interactions.


2004 ◽  
Vol 287 (1) ◽  
pp. L210-L216 ◽  
Author(s):  
Dirk Haufe ◽  
Thomas Luther ◽  
Matthias Kotzsch ◽  
Lilla Knels ◽  
Thea Koch

Intrapulmonary application of perfluorocarbons (PFC) in acute lung injury is associated with anti-inflammatory effects. A direct impact on leukocytic function may be involved. To further elucidate PFC effects on cellular activation, we compared in an in vitro model the response of concanavalin A (ConA)-stimulated lymphocytes and monocytes exposed to perfluorohexane. We hypothesized that perfluorohexane attenuates the action of the lectin ConA by altering stimulant-receptor interaction on the cell surface. Mononuclear blood cells were stimulated by incubation with ConA in the presence of different amounts of perfluorohexane. The response of lymphocytes and monocytes was determined by means of IL-2 secretion and tissue factor (TF) expression, respectively. The influence of perfluorohexane on cell-surface binding of fluorescence-labeled ConA was studied using flow cytofluorometry and fluorescence microscopy. Perfluorohexane itself did not induce a cellular activation but significantly inhibited both monocytic TF expression and, to a far greater extent, IL-2 secretion of ConA-stimulated mononuclear blood cells. The effect of perfluorohexane was due neither to an alteration of cell viability nor to a binding of the stimulant. The amount of cell surface-bound ConA was not altered by perfluorohexane, and the overall pattern of ConA receptor rearrangement did not differ between controls and treated cells. In the present study, we provide further evidence for an anti-inflammatory effect of PFC that might be beneficial in states of pulmonary hyperinflammation. A PFC-induced alteration of stimulant-receptor interaction on the surface membrane does not seem to be the cause of attenuated cell activation.


Cryobiology ◽  
1986 ◽  
Vol 23 (2) ◽  
pp. 134-140 ◽  
Author(s):  
A. Rubinacci ◽  
B. Fuller ◽  
F. Wuytack ◽  
W. De Loecker

1996 ◽  
Vol 270 (2) ◽  
pp. C522-C529 ◽  
Author(s):  
M. G. Bouma ◽  
F. A. van den Wildenberg ◽  
W. A. Buurman

Ischemia induces excessive ATP catabolism with subsequent local release of its metabolite adenosine, an autacoid with anti-inflammatory properties. Because activation of the vascular endothelium is critical to the inflammatory host response during ischemia and reperfusion, the effects of adenosine on two major determinants of endothelial cell activation (i.e., the release of proinflammatory cytokines and the expression of adhesion molecules) were studied. Adenosine dose dependently inhibited the release of interleukin (IL)-6 and IL-8 by stimulated human umbilical vein endothelial cells (HUVEC). Expression of E-selectin and vascular cell adhesion molecule 1 (VCAM-1), but not intercellular adhesion molecule 1 (ICAM-1), by activated HUVEC was also reduced by adenosine. Inhibition of endogenous adenosine deaminase activity by erythro-9-(2-hydroxy-3-nonyl)adenine or 2'-deoxycoformycin strongly enhanced the inhibitory effects of exogenous adenosine on cytokine release and expression of E-selectin and VCAM-1. However, a clear role for specific adenosine receptors in the described inhibitory events could not be established. Together, these data imply that the vascular endothelium constitutes an important target for the anti-inflammatory actions of adenosine.


2021 ◽  
pp. 100487
Author(s):  
Marlene C. Gerner ◽  
Andrea Bileck ◽  
Lukas Janker ◽  
Liesa S. Ziegler ◽  
Thomas Öhlinger ◽  
...  

2021 ◽  
Author(s):  
Romina Mitarotonda ◽  
Martín Saraceno ◽  
Marcos Todone ◽  
Exequiel Giorgi ◽  
Emilio L Malchiodi ◽  
...  

Aim: Nanoparticles (NPs) interaction with immune system is a growing topic of study. Materials & methods: Bare and amine grafted silica NPs effects on monocytes/macrophages cells were analyzed by flow cytometry, MTT test and LIVE/DEAD® viability/cytotoxicity assay. Results: Bare silica NPs inhibited proliferation and induced monocyte/macrophages activation (increasing CD40/CD80 expression besides pro-inflammatory cytokines and nitrite secretion). Furthermore, silica NPs increased cell membrane damage and reduced the number of living cells. In contrast, amine grafted silica NPs did not alter these parameters. Conclusion: Cell activation properties of bare silica NPs could be hindered after grafting with amine moieties. This strategy is useful to tune the immune system stimulation by NPs or to design NPs suitable to transport therapeutic molecules.


Sign in / Sign up

Export Citation Format

Share Document