scholarly journals PEMANFAATAN KATALIS NI/ZEOLIT PADA HIDROGENASI KATALITIK ETIL PALMITAT MENJADI SETIL ALKOHOL

Molekul ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. 83
Author(s):  
Dwi Kartika ◽  
Triyono Triyono ◽  
Karna Wijaya ◽  
Dewi Yuanita L ◽  
D. Setyawan PH D. Setyawan PH

The catalytic hydrogenation of methyl palmitate to cetyl alcohol using Ni supported on activated natural zeolite catalysts (Ni/Zeolite) has been carried out. In this work, the effect of catalyst amounts and H2 flow rate on methyl palmitate conversion and yield of cetyl alcohol were studied. Catalytic hydrogenation was performed in stainless steel fixed bed reactor. The methyl palmitate (10 g) was loaded into the reactor vessel at 400 °C for 30 minutes. In order to study the effects of catalyst amount at constant H2 flow rate, the catalyst were varied i.e. 5, 10, and 15 g. To investigate the effects of H2 flow rate were varied from 20, 40, and 60 mL.min-1 at constant catalyst amount. The composition of the products was analyzed by GC and GC-MS. The results showed that methyl palmitate conversion increase with the increasing of catalyst amount. The highest methyl palmitate conversion (45.62 %) and yield of cetyl alcohol (36.44 %) were obtained for 15 g catalyst and 40 mL. min-1 H2 flow rate.

2019 ◽  
Vol 967 ◽  
pp. 155-160 ◽  
Author(s):  
Sira Sarungallo Rosalia ◽  
Lewerang Halimaking Wilhelmus ◽  
Denny ◽  
Hariani Soekamto Nunuk ◽  
Taba Paulina

A research has been conducted to activate natural zeolites from Mamasa, West Sulawesi with sulfuric acid and heating which is then used as a catalyst for cracking palm oil methyl esters. This type of research is preliminary research. The acidification process is carried out by mixing fine natural zeolites with 0.2 N H2SO4 solution, accompanied by heating at 110 °C. Then zeolite is calcined at 600 °C for 3 hours. The result of zeolite X-Ray diffraction (XRD) analysis shows that Mamasa natural zeolite has mordenite. The crystallinity of natural zeolites is 60.8%, increasing to 68.6% after activation. Catalytic cracking is carried out by heating methyl esters (biodiesel) and active zeolite zeolite catalysts in a fixed bed reactor in several temperature variations (140, 160, and 180 °C), reaction time of 5 minutes. The results of the saponification number analysis show that cracking products have a greater saponification number (224.4 mg KOH/g oil) compared to biodiesel before cracking (220.2 mg KOH/g oil), so it is assumed that the carbon cracking carbon chain is shorter.


2015 ◽  
Vol 51 (72) ◽  
pp. 13776-13778 ◽  
Author(s):  
Xi Chen ◽  
Yuanyuan Cui ◽  
Chao Wen ◽  
Bin Wang ◽  
Wei-Lin Dai

Continuous fixed-bed catalytic hydrogenation of ethylene carbonate (EC) to methanol and ethylene glycol (EG), an emerging synthetic process of methanol via indirect conversion of CO2, was successfully performed over Cu/HMS catalysts prepared by the ammonia evaporation (AE) method.


Author(s):  
Yanbing Li ◽  
Rui Xiao ◽  
Baosheng Jin ◽  
Huiyan Zhang

As one of the fundamental issues of the new poly-generation system on the basis of gasification gas and coke oven gas, carbon dioxide reforming of methane experiments have been performed over coal chars derived from different parent coals in a lab-scale fixed-bed reactor (internal diameter 12 mm, length 700 mm). The char derived from TongChuan coal exhibited higher activity than other samples employed under the same conditions. After the reforming reaction, the char samples were covered with different amounts of carbon deposition which resulted in the surface areas decrease. As the flow rate of feed gas increased from 200 ml/min to 600 ml/min over the Xuzhou char sample at 1050 degrees Celsius, the conversion of methane decreased from 52.7% to 17.5% and the H2 /CO dropped from 0.75 to 0.55. While maintaining the flow rate of CO2 at 20ml/min at 1050 degrees Celsius, the mole ratio of reactants CH4/CO2 was varied from 1 to 1.75 which led to the H2/CO ratio increase from 0.75 to 1.2.


2017 ◽  
Vol 751 ◽  
pp. 512-517 ◽  
Author(s):  
Supranee Lao-Ubol ◽  
Phunthinee Somwongsa ◽  
Pracha Laoauyporn ◽  
Pasinee Panith ◽  
Siriporn Larpkiattaworn ◽  
...  

Five different types of silica catalyst (SBA-15, SBA-15-PO3H2, and three different Si/Al ratio of commercial zeolites (30, 80 and 280) were used to study the transformation of methanol to hydrocarbon (MTH). The aim of this study was to investigate the effect of pore diameter and acidity in the structure of silica catalysts on the process performances in terms of methanol conversion and hydrocarbon selectivity. The mesoporous silica catalysts were prepared by co-condensation method. The catalysts samples were characterized by GC-MS, XRD, BET, and NH3-TPD techniques. The catalytic performance of synthesized and commercial catalysts for MTH process was evaluated using a homemade fixed bed reactor at temperature (300°C). It was found that the liquid hydrocarbon product provided by zeolite catalysts is aromatic hydrocarbons-rich. High Si/Al zeolites with larger pore size lead to higher selectivity and yield to paraffins (C1-C7). In contrast to commercial zeolite catalyst, SBA-15 and its modification with phosphorus species showed no conversion under studied condition. These results indicate that both pore diameter and acidity influence the product distribution in methanol to hydrocarbon process.


2014 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Wiwut Tanthapanichakoon ◽  
Shinichi Koda ◽  
Burin Khemthong

Fixed-bed tubular reactors are used widely in chemical process industries, for example, selective hydrogenation of acetylene to ethylene in a naphtha cracking plant. A dynamic model is required when the effect of large fluctuations with time in influent stream (temperature, pressure, flow rate, and/or composition) on the reactor performance is to be investigated or automatically controlled. To predict approximate dynamic behavior of adiabatic selective acetylene hydrogenation reactors, we proposed a simple 1-dimensional model based on residence time distribution (RTD) effect to represent the cases of plug flow without/with axial dispersion. By modeling the nonideal flow regimes as a number of CSTRs (completely stirred tank reactors) in series to give not only equivalent RTD effect but also theoretically the same dynamic behavior in the case of isothermal first-order reactions, the obtained simple dynamic model consists of a set of nonlinear ODEs (ordinary differential equations), which can simultaneously be integrated using Excel VBA (Visual BASIC Applications) and 4th-order Runge-Kutta algorithm. The effects of reactor inlet temperature, axial dispersion, and flow rate deviation on the dynamic behavior of the system were investigated. In addition, comparison of the simulated effects of flow rate deviation was made between two industrial-size reactors.Keywords: Dynamic simulation, 1-D model, Adiabatic reactor, Acetylene hydrogenation, Fixed-bed reactor, Axial dispersion effect


2017 ◽  
Vol 122 (1) ◽  
pp. 247-257 ◽  
Author(s):  
S. Narayanan ◽  
J. Judith Vijaya ◽  
S. Sivasanker ◽  
T. M. Sankaranarayanan ◽  
C. Ragupathi ◽  
...  

2013 ◽  
Vol 291-294 ◽  
pp. 748-754
Author(s):  
De Min He ◽  
Jun Guan ◽  
Lin Zhang ◽  
Qiu Min Zhang

In this paper, the pyrolysis of Honehe Lignite in N2 and N2-Methanol atmospheres were investigated on a fixed-bed reactor. The methanol flow rate, pressure, temperature and holding time were studied. The maximum of coal tar yields 12.01% (with methanol injected in) and 9.61% (absence of methanol) were achieved on the conditions of 520°C, 0.5MPa, N2 flow rate 50ml/min, methanol flow rate 0.1ml/min and holding time 20min, and the relative growing rate was about 25.0%. The gas from coal pyrolysis was detected by GC, and the coal tar was reprocessed and then detected by GC-MS. While the solid char was detected by IR to study the change of oxygen functional group during coal pyrolysis in N2-Methanol atmosphere. Compared with that pyrolysis in N2 atmosphere, the components, characteristics and properties of coal tar, gas and solid char varied a lot. The results showed that the injection of methanol into the system changed the products yields and distribution. The results showed that the total yields of phenol, cresol and xylenol (short for PCX) in the Acidic were about 1.93% and 1.15% (daf) in two atmospheres respectively, the PCX yields with methanol injected was about 1.67 times higher than that absence of methanol.


2016 ◽  
Vol 122 ◽  
pp. 282-288 ◽  
Author(s):  
Hyung Won Lee ◽  
Young-Min Kim ◽  
Jungho Jae ◽  
Bong Hyun Sung ◽  
Sang-Chul Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document