scholarly journals PEOPLE COUNTING FOR PUBLIC TRANSPORTATIONS USING YOU ONLY LOOK ONCE METHOD

2021 ◽  
Vol 2 (1) ◽  
pp. 57-66
Author(s):  
Tsabita Al Asshifa Hadi Kusuma ◽  
Koredianto Usman ◽  
Sofia Saidah

People counting have been widely used in life, including public transportations such as train, airplane, and others. Service operators usually count the amount of passengers manually using a hand counter. Nowadays, in an era that most of human-things are digital, this method is certainly consuming enough time and energy. Therefore, this research is proposed so the service operator doesn't have to count manually with a hand counter, but using an image processing with You Only Look Once (YOLO) method. This project is expected that people counting is no longer done manually, but already based on computer vision. This Final Project uses YOLOv4 that is the latest method in detecting untill 80 classes of object. Then it will use transfer learning as well to change the number of classes to 1 class. This research was done by using Python programming language with various platforms. This research also used three training data scenarios and two testing data scenarios. Parameters measured are accuration, precision, recall, F1 score, Intersection of Union (IoU), and mean Average Precision (mAP). The best configurations used are learning rate 0.001, random value 0, and sub divisions 32. And the best accuration for this system is 69% with the datasets that has been trained before. The pre-trained weights have 72.68% of accuracy, 77% precision, and 62.88% average IoU. This research has resulted a proper performance for detecting and counting people on public transportations.

2020 ◽  
Vol 3 (2) ◽  
pp. 110-117
Author(s):  
Irayori Loelianto ◽  
Moh. Sofyan S Thayf ◽  
Husni Angriani

STMIK KHARISMA Makassar has graduated thousands of alumni since it was founded. However, the number of students registering is uncertain every year, although from 2016 to 2019 there has been an increase in the number of registrations. The problem is the percentage of the number of prospective students registering has actually decreased significantly. The purpose of this research is to implement the Naive Bayes theory in classification of STMIK KHARISMA Makassar prospective students. This research basically uses the Naive Bayes theory as a classifier, and is made using the Python programming language. At the classifier design stage, there were a total of 499 data collected from 2016 to 2019. The data was divided by a ratio of 80:20 for training data and test data. The result from the research indicate the level of accuracy of the classifier reaches 73%.


2020 ◽  
Vol 65 (1) ◽  
pp. 96-104
Author(s):  
Tatian-Cristian Mălin

We introduce in this paper an application developed in the Python programming language that can be used to generate digital signals with known frequencies and amplitudes. These digital signals, since have known parameters, can be used to create benchmarks for test and numerical simulation.


Author(s):  
Jianfeng Jiang

Objective: In order to diagnose the analog circuit fault correctly, an analog circuit fault diagnosis approach on basis of wavelet-based fractal analysis and multiple kernel support vector machine (MKSVM) is presented in the paper. Methods: Time responses of the circuit under different faults are measured, and then wavelet-based fractal analysis is used to process the collected time responses for the purpose of generating features for the signals. Kernel principal component analysis (KPCA) is applied to reduce the features’ dimensionality. Afterwards, features are divided into training data and testing data. MKSVM with its multiple parameters optimized by chaos particle swarm optimization (CPSO) algorithm is utilized to construct an analog circuit fault diagnosis model based on the testing data. Results: The proposed analog diagnosis approach is revealed by a four opamp biquad high-pass filter fault diagnosis simulation. Conclusion: The approach outperforms other commonly used methods in the comparisons.


2021 ◽  
Vol 7 (4) ◽  
pp. 64
Author(s):  
Tanguy Ophoff ◽  
Cédric Gullentops ◽  
Kristof Van Beeck ◽  
Toon Goedemé

Object detection models are usually trained and evaluated on highly complicated, challenging academic datasets, which results in deep networks requiring lots of computations. However, a lot of operational use-cases consist of more constrained situations: they have a limited number of classes to be detected, less intra-class variance, less lighting and background variance, constrained or even fixed camera viewpoints, etc. In these cases, we hypothesize that smaller networks could be used without deteriorating the accuracy. However, there are multiple reasons why this does not happen in practice. Firstly, overparameterized networks tend to learn better, and secondly, transfer learning is usually used to reduce the necessary amount of training data. In this paper, we investigate how much we can reduce the computational complexity of a standard object detection network in such constrained object detection problems. As a case study, we focus on a well-known single-shot object detector, YoloV2, and combine three different techniques to reduce the computational complexity of the model without reducing its accuracy on our target dataset. To investigate the influence of the problem complexity, we compare two datasets: a prototypical academic (Pascal VOC) and a real-life operational (LWIR person detection) dataset. The three optimization steps we exploited are: swapping all the convolutions for depth-wise separable convolutions, perform pruning and use weight quantization. The results of our case study indeed substantiate our hypothesis that the more constrained a problem is, the more the network can be optimized. On the constrained operational dataset, combining these optimization techniques allowed us to reduce the computational complexity with a factor of 349, as compared to only a factor 9.8 on the academic dataset. When running a benchmark on an Nvidia Jetson AGX Xavier, our fastest model runs more than 15 times faster than the original YoloV2 model, whilst increasing the accuracy by 5% Average Precision (AP).


2021 ◽  
pp. 1-11
Author(s):  
Tingting Zhao ◽  
Xiaoli Yi ◽  
Zhiyong Zeng ◽  
Tao Feng

YTNR (Yunnan Tongbiguan Nature Reserve) is located in the westernmost part of China’s tropical regions and is the only area in China with the tropical biota of the Irrawaddy River system. The reserve has abundant tropical flora and fauna resources. In order to realize the real-time detection of wild animals in this area, this paper proposes an improved YOLO (You only look once) network. The original YOLO model can achieve higher detection accuracy, but due to the complex model structure, it cannot achieve a faster detection speed on the CPU detection platform. Therefore, the lightweight network MobileNet is introduced to replace the backbone feature extraction network in YOLO, which realizes real-time detection on the CPU platform. In response to the difficulty in collecting wild animal image data, the research team deployed 50 high-definition cameras in the study area and conducted continuous observations for more than 1,000 hours. In the end, this research uses 1410 images of wildlife collected in the field and 1577 wildlife images from the internet to construct a research data set combined with the manual annotation of domain experts. At the same time, transfer learning is introduced to solve the problem of insufficient training data and the network is difficult to fit. The experimental results show that our model trained on a training set containing 2419 animal images has a mean average precision of 93.6% and an FPS (Frame Per Second) of 3.8 under the CPU. Compared with YOLO, the mean average precision is increased by 7.7%, and the FPS value is increased by 3.


2011 ◽  
Vol 189-193 ◽  
pp. 2042-2045 ◽  
Author(s):  
Shang Jen Chuang ◽  
Chiung Hsing Chen ◽  
Chien Chih Kao ◽  
Fang Tsung Liu

English letters cannot be recognized by the Hopfield Neural Network if it contains noise over 50%. This paper proposes a new method to improve recognition rate of the Hopfield Neural Network. To advance it, we add the Gaussian distribution feature to the Hopfield Neural Network. The Gaussian filter was added to eliminate noise and improve Hopfield Neural Network’s recognition rate. We use English letters from ‘A’ to ‘Z’ as training data. The noises from 0% to 100% were generated randomly for testing data. Initially, we use the Gaussian filter to eliminate noise and then to recognize test pattern by Hopfield Neural Network. The results are we found that if letters contain noise between 50% and 53% will become reverse phenomenon or unable recognition [6]. In this paper, we propose to uses multiple filters to improve recognition rate when letters contain noise between 50% and 53%.


2020 ◽  
Vol 4 (2) ◽  
pp. 24-29
Author(s):  
Adlian Jefiza ◽  
Indra Daulay ◽  
Jhon Hericson Purba

Permasalahan utama pada penelitian ini merujuk kepada semakin menurunnya daya tahan tubuh lanjut usia (lansia). Hal ini membutuhkan sistem monitoring aktivitas lansia secara real time. Untuk mendeteksi kegiatan para lansia, dirancang sebuah perangkat monitoring dengan accelerometer 3-sumbu dan gyroscope 3-sumbu. Data sensor diperoleh dari lima partisipan. Setiap partisipan melakukan lima gerakan yaitu terjatuh, duduk, tidur, rukuk dan sujud. Gerakan yang dipilih adalah gerakan yang menyerupai gerakan jatuh. Total data yang diperoleh dari partisipan adalah 75 data yang terbagi menjadi training data dan testing data. Penelitian ini menggunakan metode transformasi Wavelet untuk mengenali fitur dari gerakan. Untuk pengklasifikasian setiap gerakan, digunakan metode K-nearest neighbors (KNN). Hasil klasifikasi gerakan menggunakan lima kelas menghasilkan nilai root mean square sebesar 0.0074 dengan akurasi 100%.


2021 ◽  
Vol 12 (2) ◽  
pp. 52-65
Author(s):  
Eviatar Rosenberg ◽  
Dima Alberg

A significant part of pension savings is in the capital market and exposed to market volatility. The COVID-19 pandemic crisis, like the previous crises, damaged the gains achieved in those funds. This paper presents a development of open-source finance system for stocks backtesting trade strategies. The development will be operated by the Python programming language and will implement application user interface. The system will import historical data of stocks from financial web and will produce charts for analysis of the trends in stocks price. Based on technical analysis, it will run trading strategies which will be defined by the user. The system will output the trade orders that should have been executed in retrospect and concluding charts to present the profit and loss that would occur to evaluate the performance of the strategy.


Sign in / Sign up

Export Citation Format

Share Document