scholarly journals Kinetics Modeling of Straw Bioremediation as Nutrition in Processing Liquid Waste of Oil and Gas

2020 ◽  
Vol 13 (4) ◽  
pp. 357-363
Author(s):  
Ninin Asminah ◽  
Ismiyati ◽  
Nurul Hidayati Fithriyah ◽  
Athiek Sri Redjeki

Processing performance of hazardous wastes in Indonesia, mainly produced in mining, energy and mineral industries, is well below target. One suitable technique for processing such waste is bioremediation which utilize microorganism activities. Waste rice straw is one potential substrate which carries and supports the bioremediation microorganisms. Lignin in the straw provides nutrients for bacteria and fungi which enable the production of enzymes to degrade pollutants in the waste. Lignin can also increase interfacial surface tension between hydrophobic and hydrophilic fractions in the waste mixture to facilitate their separation. The objective of this study is to model the kinetic of bioremediation which represent the relation between bioremediation period and reduction rate of Total Petroleum Hydrocarbon (TPH). The model utilized characterization results of retentate from waste filtration in terms of water content and pH. The bioremediation process involved mixing of waste rice straw and processed liquid waste from a petroleum refinery plant at 1:20 (m/v) ratio for varied duration of 10, 15, 20, 25, and 30 days. Results showed that the formation rate of water (measured as moisture content in retentate) which indicate the reduction rate of TPH follows 1.2 order of reaction at rate constant of 0.594 day-1. Prediction of Michaelis-Menten model was also performed. The pH of retentate was 8, and organoleptic test observed the turning of color from turbid yellow into dark brown as well as the disappearance of petroleum oil smell, which demonstrated that the processed waste is safe for the environment.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 561
Author(s):  
Enze Wang ◽  
Xiaolong Lin ◽  
Lei Tian ◽  
Xinguang Wang ◽  
Li Ji ◽  
...  

Rice straw is a byproduct of agricultural production and an important agricultural resource. However, rice straw has not yet been effectively used, and incorrect treatment methods (such as burning in the field) can cause serious damage to the environment. Studies have shown that straw returning is beneficial to soil, but there have been few studies focused on the effect of the amount of short-term straw returned on the soil microbial community. This study evaluates 0%, 50%, 75%, and 100% rice straw returned to the field on whether returning different amounts of straw in the short term would affect the diversity and composition of the soil microbial community and the correlation between bacteria and fungi. The results show that the amount of straw returned to the field is the main factor that triggers the changes in the abundance and composition of the microbial community in the paddy soil. A small amount of added straw (≤ 50% straw added) mainly affects the composition of the bacterial community, while a larger amount of added straw (> 50% straw added) mainly affects the composition of the fungal community. Returning a large amount of straw increases the microbial abundance related to carbon and iron cycles in the paddy soil, thus promoting the carbon and iron cycle processes to a certain extent. In addition, network analysis shows that returning a large amount of straw also increases the complexity of the microbial network, which may encourage more microbes to be niche-sharing and comprehensively improve the ecological environment of paddy soil. This study may provide some useful guidance for rice straw returning in northeast China.


2020 ◽  
pp. 21-26
Author(s):  
E.H. Ahmadov ◽  

The paper studies the reduction rate of gas production in the wells of Bulla-deniz field drilled to VIII horizon. With this purpose, geological (reservoir properties, oil-gas saturation, net thickness, formation pressure and temperature, formation heterogeneity, multi-layer system, tectonic faults, physical-chemical properties of oil and gas etc.) and technological (well structure, measuring and transportation system, well operation regime, drilling technology etc.) conditions of formation were analyzed and the well model of VII and VIII horizons of Bulla-deniz field using these geological and technical parameters developed as well. For the estimation of impact of geological and technical aspects on production, sensitivity analysis was carried out on the models. The suggestions for elaboration of uncertainty of geological and technical parameters affecting production dynamics were developed. To reveal the reasons for production differences of the wells, it was proposed to install borehole manometers, to obtain the data on pressure recovery curves, drainage area, skin-effect impact, permeability and to develop a study plan of bottomhole zone with acid.


Author(s):  
Casper Hadsbjerg ◽  
Kristian Krejbjerg

When the oil and gas industry explores subsea resources in remote areas and at high water depths, it is important to have advanced simulation tools available in order to assess the risks associated with these expensive projects. A major issue is whether hydrates will form when the hydrocarbons are transported to shore in subsea pipelines, since the formation of a hydrate plug might shut down a pipeline for an extended period of time, leading to severe losses. The industry practices a conservative approach to hydrate plug prevention, which is the addition of inhibitors to ensure that hydrates cannot form under pipeline pressure and temperature conditions. The addition of inhibitors to subsea pipelines is environmentally unfriendly and also a very costly procedure. Recent efforts has therefore focused on developing models for the hydrate formation rate (hydrate kinetics models), which can help determine how fast hydrates might form a plug in a pipeline, and whether the amount of inhibitor can be reduced without increasing the risk of hydrate plug formation. The main variables determining whether hydrate plugs form in a pipeline are: 1) the ratio of hydrocarbons to water, 2) the composition of the hydrocarbons, 3) the flowrates/flow regimes in the pipeline, 4) the amount of inhibitor in the system. Over the lifetime of a field, all 4 variables will change, and so will the challenge of hydrate plug prevention. This paper will examine the prevention of hydrate plugs in a pipeline, seen from a hydrate kinetics point of view. Different scenarios that can occur over the lifetime of a field will be investigated. Exemplified through a subsea field development, a pipeline simulator that considers hydrate formation in a pipeline is used to carry out a study to shed light on the most important issues to consider as conditions change. The information gained from this study can be used to cut down on inhibitor dosage, or possibly completely remove the need for inhibitor.


2018 ◽  
Vol 178 ◽  
pp. 290-298 ◽  
Author(s):  
Forough Momayez ◽  
Keikhosro Karimi ◽  
Ilona Sárvári Horváth

2021 ◽  
Vol 17 (37) ◽  
pp. 164-178
Author(s):  
Sergey Nikolaevich KRIVOSHCHEKOV ◽  
Kirill Andreevich VYATKIN ◽  
Aleksandr Aleksandrovich KOCHNEV ◽  
Anton Vadimovich KOZLOV

Background. There is currently a lack of a methodology that can enable highly-precise determinations of rates of asphaltene deposit (AD) formations in case of dual operation of two oil reservoirs via a single multi-zone oil-producing well using small-bore hollow rods as part of downhole pumping equipment. This methodology aims to minimize the costs of oil and gas companies for servicing such oil wells and preventing their failure. Aims. Creating a methodology aimed at accurate quantitative estimations of the organic deposit formation rates at the inner part of the hollow rod strings. Methods. Calculations of temperature distributions along the hollow rod string inner surface; graphic presentations of the calculated data; laboratory tests using a Cold Finger unit for the selected sections of the hollow rod strings and the graphic presentations of the results. Results and Discussion. The suggested algorithm was field-tested at a target multi-zone oil-producing well of Pavlovka oil field in Perm Krai of the Russian Federation. Using the suggested algorithm, a variation in organic deposit formation rates along the hollow rod string length was evaluated, and the depth of the maximum deposit formation rate was determined. To prevent the deposits in question along the hollow rod string at a target oil-producing well of Pavlovka oil field, laboratory tests were conducted to determine the efficiency of employing the chemical technology, i.e., the use of AD inhibitors, as well as a technology for the removal of the formed deposits using AD solvents. Conclusions. The proposed algorithm is more accurate and requires less time and money compared to existing algorithms. It enables the most effective evaluation of the formation depth of the organic deposits and the intensity at these marks. When evaluating the laboratory studies results, it can be noted that the use of the considered technologies to eliminate organic deposits is highly effective and can be used for this purpose.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2912
Author(s):  
Ganesh L. Ghurye

The objective of this research study was to evaluate the feasibility of using a minimum liquid discharge (MLD) desalination approach as an alternate management option for unconventional produced waters (PWs) with a focus on minimizing the generation of solid waste. The feasibility of MLD was evaluated using OLI, a water chemistry software, to model thermal desalination of unconventional PWs from the Delaware Basin in New Mexico (NM). Desalination was theoretically terminated at an evaporation point before halite (NaCl) saturation in the residual brine. Results of this study showed that selectively targeting a subset of higher flow rate and lower TDS wells/centralized tank batteries (CTBs) could yield up to 76% recovery of distillate while generating minimal solid waste. Using a selective MLD approach did reduce the quantity of distillate recovered when compared with ZLD, and left a reduced volume of residual brine which has to be managed as a liquid waste. However, selective MLD also greatly reduced the amount of solid waste. The use of a ZLD approach yielded incrementally greater quantities of distillate but at the cost of large quantities of difficult-to-manage highly soluble waste. Simulation results showed that waste generated before NaCl precipitation was primarily composed of insoluble compounds such as calcite, barite and celestite, which can be disposed in conventional landfills. This study also found a simple empirical linear relationship between TDS and distillate recovery, thus allowing a non-expert to rapidly estimate potential distillate recovery for a given starting PW quality.


Author(s):  
C. P. Ononugbo ◽  
G. O. Avwiri ◽  
J. I. Ekpo ◽  
Y. E. Chad-Umoren

Aim: The aim of this study is radiometric survey of oil and gas wastes and its health risks in Niger Delta region of Nigeria.  Study Design: This study was purely an experimental work which involves collection of samples and laboratory analysis. Place and Duration of the Study: This study was carried out at oil and gas company waste stream facilities and waste pipe market within Niger Delta region between June 2018 and May, 2019. Methodology: Sixteen samples (4 drill cuttings, 4 pipe scales, 2 sludges and 6 produced water) were randomly collected from four waste streams in six locations within the oil and gas production facilities and used pipe market. These samples were taken to the laboratory, prepared following the ISO procedure and packaged in a porcelain bottle, sealed and kept for twenty eight days in order to ensure secular equilibrium between 238U, 232Th and their progenies and counted with high purity Germanium detector (HPGe). The activity concentration of all the radionuclides were used to determine the radiological health risks using mathematical models. Results: The lowest and highest specific activity concentrations  of 226Ra, 238U , 232Th  and 40K, in solid wastes are 5.28±1.08 and 25727.75 Bqkg-1, 3.61±0.76 and 23021.73±1041.58 Bqkg-1, 2.40±0.56 and 21468.25±1125.57 Bqkg-1 and 35.31±2.38 and 1527.73 ±86.60 Bqkg-1 respectively. In the liquid waste, the lowest and highest activity concentration of 238U, 232Th and 40K are 0.34±0.15 and 1.11±0.28 Bql-1, 0.63±0.17 and 1.06±0.18 Bql-1 and 9.60±0.66 and 14.20 ±1.04 Bql-1 respectively. 226Ra was below detectable limit in the liquid waste except in one sample (CZI). Downhole pipe scales recorded the highest activity concentration of all the radionuclides. Surface pipe scale also recorded very high activity concentration of all the radionuclides. The radiological health risk parameters assessed from the activity concentration of these radionuclide were all above the safe reference levels in downhole pipe scales and surface pipe scales while they are within the safe values in other samples. The estimated Exposure rate for both solid and liquid wastes were higher than the recommended reference level of 600 µRh-1 and the associated dose rate was also higher than reference level. Conclusion: The result of this work revealed that downhole and surface pipes from oilfield commonly used in the construction of buildings and domestic overhead tank-stands are associated with high levels of ionizing radiation which may be detrimental to human health and the environment.


2021 ◽  
Author(s):  
Alejandro Castilla ◽  
Michaela Zeuss ◽  
Michaela Schmidt

Abstract With an increasing awareness of minimising the environmental footprint combined with the inclusion of circularity in the oil and gas industry, stricter laws and therefore more rigorous treatment targets will have to be implemented in the waste/resource management. Increasingly complex solid and liquid waste streams result in the further need to implement safer, more advanced technologies. Emission levels, resource recovery, energy efficiency, worker safety, and input material flexibility will become key assessment factors. The vacuum thermal desorption process allows for the recovery of resources from different industrial hazardous wastes. At the core of the process is a specially designed vacuum evaporator chamber utilizing indirect heat and controlled vacuum to evaporate contaminants. With this process, resources can be recovered and solids/mineral fractions decontaminated therefore minimising the hazardous waste and bringing valuable resources back into the value chain. A wide range of input materials, independently from their consistency, can be treated using the same process, as a result of the batch-wise working principle of the vacuum evaporator. The process reduces air emissions derived from two sources. One originates from the thermal oil heating system (flue gas), the other from the vacuum desorption process (exhaust). For the latter, in an oily waste recycling facility that processes approximately 30,000 tonnes per year, <<100 m3/h are emitted, of which on average 96 % are nitrogen. Regarding resource recovery, typical output material parameters include clean solids with a TPH (up to C40) content < 0.5 %, oil in product quality with a recovery rate > 99.5 %, and clean water for moistening of the solids. Highest energy efficiency is achieved because the vacuum reduces the boiling point of the hydrocarbons by more than 100 °C. In addition, the recovered oil can be used as fuel to run the equipment. In conclusion, resources will be recovered and therefore hazardous waste reduced, emissions decreased and highest safety for workers observed. Aside from the above stated advantages of using indirectly heated thermal desorption, this process also offers the possibility to be operated using renewable energy. Therefore, guaranteeing zero emissions supporting the health & safety of our environment and its people.


Sign in / Sign up

Export Citation Format

Share Document