Circular Economy in the Oil and Gas Exploration and Production: Resource Recovery from Drill Cuttings and other Oily Wastes

2021 ◽  
Author(s):  
Alejandro Castilla ◽  
Michaela Zeuss ◽  
Michaela Schmidt

Abstract With an increasing awareness of minimising the environmental footprint combined with the inclusion of circularity in the oil and gas industry, stricter laws and therefore more rigorous treatment targets will have to be implemented in the waste/resource management. Increasingly complex solid and liquid waste streams result in the further need to implement safer, more advanced technologies. Emission levels, resource recovery, energy efficiency, worker safety, and input material flexibility will become key assessment factors. The vacuum thermal desorption process allows for the recovery of resources from different industrial hazardous wastes. At the core of the process is a specially designed vacuum evaporator chamber utilizing indirect heat and controlled vacuum to evaporate contaminants. With this process, resources can be recovered and solids/mineral fractions decontaminated therefore minimising the hazardous waste and bringing valuable resources back into the value chain. A wide range of input materials, independently from their consistency, can be treated using the same process, as a result of the batch-wise working principle of the vacuum evaporator. The process reduces air emissions derived from two sources. One originates from the thermal oil heating system (flue gas), the other from the vacuum desorption process (exhaust). For the latter, in an oily waste recycling facility that processes approximately 30,000 tonnes per year, <<100 m3/h are emitted, of which on average 96 % are nitrogen. Regarding resource recovery, typical output material parameters include clean solids with a TPH (up to C40) content < 0.5 %, oil in product quality with a recovery rate > 99.5 %, and clean water for moistening of the solids. Highest energy efficiency is achieved because the vacuum reduces the boiling point of the hydrocarbons by more than 100 °C. In addition, the recovered oil can be used as fuel to run the equipment. In conclusion, resources will be recovered and therefore hazardous waste reduced, emissions decreased and highest safety for workers observed. Aside from the above stated advantages of using indirectly heated thermal desorption, this process also offers the possibility to be operated using renewable energy. Therefore, guaranteeing zero emissions supporting the health & safety of our environment and its people.

Author(s):  
Nataliya Stoyanets ◽  
◽  
Mathias Onuh Aboyi ◽  

The article defines that for the successful implementation of an innovative project and the introduction of a new product into production it is necessary to use advanced technologies and modern software, which is an integral part of successful innovation by taking into account the life cycle of innovations. It is proposed to consider the general potential of the enterprise through its main components, namely: production and technological, scientific and technical, financial and economic, personnel and actual innovation potential. Base for the introduction of technological innovations LLC "ALLIANCE- PARTNER", which provides a wide range of support and consulting services, services in the employment market, tourism, insurance, translation and more. To form a model of innovative development of the enterprise, it is advisable to establish the following key aspects: the system of value creation through the model of cooperation with partners and suppliers; creating a value chain; technological platform; infrastructure, determine the cost of supply, the cost of activities for customers and for the enterprise as a whole. The system of factors of influence on formation of model of strategic innovative development of the enterprise is offered. The expediency of the cost of the complex of technological equipment, which is 6800.0 thousand UAH, is economically calculated. Given the fact that the company plans to receive funds under the program of socio-economic development of Sumy region, the evaluation of the effectiveness of the innovation project, the purchase of technological equipment, it is determined that the payback period of the project is 3 years 10 months. In terms of net present value (NPV), the project under study is profitable. The project profitability index (PI) meets the requirements for a positive decision on project implementation> 1.0. The internal rate of return of the project (IRR) also has a positive value of 22% because it exceeds the discount rate.


2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


2015 ◽  
Vol 5 (7) ◽  
pp. 1-8
Author(s):  
Vijay Pundalik Bhangale ◽  
Maithili Prashant Dhuri

Subject area Marketing. Study level/applicability MBA Marketing Class. Case overview The case describes the transition of a “Galvanized Wires Business of Tata Steel” into a unique identity, the'Tata Wiron' brand. It focuses on key stages in this journey, including “Understanding the Customers in Galvanized Wires Business”, “Value Chain”, “Challenges Faced”, “Need for Branding”, “Market Segmentation”, “Competition”, “Process of Branding”, “Differentiation”, “Distribution & Sales” and “Promotion”. Tata Steel Wires Business is a major player in the steel wire industry, servicing the discerning needs of its customers across global markets and the leading producer of steel wires in India. A wealth of experience and expertise in the wire industry coupled with latest technology incorporations has enabled Tata Steel Wires Division to constantly meet the most exacting specifications and requirements of its customers. It manufactures a wide range of wires catering to the needs of various industry segments, such as automobile, infrastructure, power and general engineering. The products are well established across the markets of Europe, the USA, Middle East Asia, Australasia, South Asia and Asia and the Far East. Expected learning outcomes The expected learning outcomes are as follows: understanding how in-depth analysis of the competition and value chain establishes the need for branding in a commodity market; understanding how consumer insights help in market segmentation and targeting; and building a brand in commodity market. Supplementary materials Teaching notes are available for educators only. Please contact your library to gain login details or email [email protected] to request teaching notes.


2021 ◽  
Vol 13 (11) ◽  
pp. 6018
Author(s):  
Theo Lynn ◽  
Pierangelo Rosati ◽  
Antonia Egli ◽  
Stelios Krinidis ◽  
Komninos Angelakoglou ◽  
...  

The building stock accounts for a significant portion of worldwide energy consumption and greenhouse gas emissions. While the majority of the existing building stock has poor energy performance, deep renovation efforts are stymied by a wide range of human, technological, organisational and external environment factors across the value chain. A key challenge is integrating appropriate human resources, materials, fabrication, information and automation systems and knowledge management in a proper manner to achieve the required outcomes and meet the relevant regulatory standards, while satisfying a wide range of stakeholders with differing, often conflicting, motivations. RINNO is a Horizon 2020 project that aims to deliver a set of processes that, when working together, provide a system, repository, marketplace and enabling workflow process for managing deep renovation projects from inception to implementation. This paper presents a roadmap for an open renovation platform for managing and delivering deep renovation projects for residential buildings based on seven design principles. We illustrate a preliminary stepwise framework for applying the platform across the full-lifecycle of a deep renovation project. Based on this work, RINNO will develop a new open renovation software platform that will be implemented and evaluated at four pilot sites with varying construction, regulatory, market and climate contexts.


Author(s):  
Eduardo H. M. Cruz ◽  
Matthias Diener ◽  
Laércio L. Pilla ◽  
Philippe O. A. Navaux

Current and future architectures rely on thread-level parallelism to sustain performance growth. These architectures have introduced a complex memory hierarchy, consisting of several cores organized hierarchically with multiple cache levels and NUMA nodes. These memory hierarchies can have an impact on the performance and energy efficiency of parallel applications as the importance of memory access locality is increased. In order to improve locality, the analysis of the memory access behavior of parallel applications is critical for mapping threads and data. Nevertheless, most previous work relies on indirect information about the memory accesses, or does not combine thread and data mapping, resulting in less accurate mappings. In this paper, we propose the Sharing-Aware Memory Management Unit (SAMMU), an extension to the memory management unit that allows it to detect the memory access behavior in hardware. With this information, the operating system can perform online mapping without any previous knowledge about the behavior of the application. In the evaluation with a wide range of parallel applications (NAS Parallel Benchmarks and PARSEC Benchmark Suite), performance was improved by up to 35.7% (10.0% on average) and energy efficiency was improved by up to 11.9% (4.1% on average). These improvements happened due to a substantial reduction of cache misses and interconnection traffic.


2021 ◽  
Author(s):  
Ahmad Hafizi Bin Ahmad Zaini ◽  
M Khairi Bin Rahim ◽  
M Hairi Bin Razak ◽  
Steve Moir

Abstract Abandonment and decommissioning activities of oil and gas assets had been on the increasing trend. As an activity of minimal to no economic value return, the investment into Abandonment and Decommissioning (A&D) should be properly strategized to ensure all objectives are met safely within available time and resources. This paper will discuss Operator's strategy in planning and handling waste from A&D activities of fifteen (15) deepwater subsea wells in Mauritania, West Africa. The approach of this A&D project at a remote location was done in two separate campaign instead of a single campaign based on technical and commercial evaluations performed by Operator. Subsea structures, Christmas trees, tubulars and others are expected to be retrieved and disposed according to local and international standard. In general, Operator are expecting two (2) type of waste which are non-hazardous waste and hazardous waste due to hydrocarbon or naturally occurring radioactive material (NORM) contamination. Due to the limitation of capable hazardous waste handling and disposal in country, Operator decided to export waste to identified facilities outside of country at the end of the project via sea-freight. Operator appointed one contractor to provide a full-service related to the waste management and disposal that covers field services and onshore services that includes radiological monitoring to identify NORM waste, labelling, packaging at offshore, onshore storage, transportation and logistics that include Trans-Frontier Shipment (TFS). The strategy of appointing one contractor for full service of waste management and disposal has promoted a single – point accountability to the contractor and this has enabled the objective been delivered effectively. COVID-19 pandemic posed a great challenge on cross-border logistic planning due to additional measure been imposed by receiving country. Furthermore, the new development of United Kingdom exiting European Union (BREXIT) also posed some level of uncertainty to the contractor to obtain relevant approvals for waste export. To reduce the amount of waste to be export, Operator continuously looking for and successfully found a local recycling facility that able to handle the non-hazardous waste while meeting local regulation, Operator's and industrial standard. All outlined strategy was proven to be effective for waste management in remote location, uncertainty on cross-border waste export challenge, as well as capitalizing on the limited local resources available.


2020 ◽  
pp. 42-45
Author(s):  
J.A. Kerimov ◽  

The implementation of plastic details in various constructions enables to reduce the prime cost and labor intensity of machine and device manufacturing, decrease the weight of design and improve their quality and reliability at the same time. The studies were carried out with the aim of labor productivity increase and substitution of colored and black metals with plastic masses. For this purpose, the details with certain characteristics were selected for further implementation of developed technological process in oil-gas industry. The paper investigates the impact of cylinder and compression mold temperature on the quality parameters (shrinkage and hardness) of plastic details in oil-field equipment. The accessible boundaries of quality indicators of the details operated in the equipment of exploration, drilling and exploitation of oil and gas industry are studied in a wide range of mode parameters. The mathematic dependences between quality parameters (shrinkage and hardness) of the details on casting temperature are specified.


2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2021 ◽  
Author(s):  
José Correia ◽  
Cátia Rodrigues ◽  
Ricardo Esteves ◽  
Ricardo Cesar Bezerra de Melo ◽  
José Gutiérrez ◽  
...  

Abstract Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.


2021 ◽  
Author(s):  
Max Olsen ◽  
Ragni Hatlebakk ◽  
Chris Holcroft ◽  
Arne Stavland ◽  
Nils Harald Giske ◽  
...  

Abstract Scope Controlled dissolution glasses form a permanent consolidating mineral matrix inside formations with either permeable or impermeable properties. The unique solution has a low injection viscosity and can be easily injected into a wide range of formations. The application method is simple and does not require multiple fluids or pre- and post-flushing. This paper focuses on the benefits of controlled dissolution glasses and potential applications in the oil and gas industry. Methods, Procedures, Process Controlled dissolution glasses have been researched extensively by Glass Technology Services (GTS) since 1999 for the biomedical industry, nuclear waste storage industry, and defense and aerospace industries. GTS together with operators have been performing research and development for the oil industry over the last 10 years. The research investigated different glass compositions to determine their injectability and change in formation properties post-treatment. Sandstone, chalk, and shale formations were used in the testing. Flow testing using a Hoek cell and a core flood apparatus was used to determine the post-treatment permeability. For post-treatment strength measurement, Brazilian tensile strength tests and modified cone penetration tests were used to determine tensile strength and shear strength respectively. The testing evaluated different mixing fluids, such as water and different brines, compatibility, corrosion testing, and concentrations. Results, Observations, Conclusions The testing identified different glass compositions and concentrations that are suitable for different applications and formations. Certain glass compositions increase tensile strength significantly while also maintaining the permeability in the formation. Other glass compositions have similar tensile strength increase, but result in an impermeable seal. The liquid glass solutions react with the formation to form a mineral precipitation inside the formation. The reaction with the formation occurs quickly at downhole conditions, within hours of placement. The glass can be mixed with water and variety of brines to form a stable solution across a range of densities. The testing and results to date have laid the foundation for use in a variety of consolidation and P&A applications in oil and gas wells. Testing is ongoing for a chalk and sandstone consolidation solution and for a sealing solution. Novel/Additive Information These novel glass solutions can solve many of the production and instability challenges that plague weak formations. The glasses can be injected into very low permeability formation to either seal or consolidate.


Sign in / Sign up

Export Citation Format

Share Document