scholarly journals Non-Markov Stateful Evolutionary Games

Author(s):  
Mark Burgess

A new evolutionary game is introduced which incorporates states and actions into the strategies of the organisms of the evolving populations. The game centrally features actions that result in demographic flow between states that may not conserve organism numbers. It is by this feature that the game encapsulate a range of other evolutionary games, and can encode almost very complex interactions between organisms, species and populations. The game's formalism is expounded and the nature of the game's equilibrium is discussed. This discussion leads to an algorithm for numerically determining the stable equilibrium points which is exemplified in the context of a modified Hawk-Dove game. The game's flexibility for modeling population dynamics is evaluated and compared with other evolutionary games.

Author(s):  
Mark Burgess

A new evolutionary game is introduced which incorporates states and actions into the strategies of the organisms of the evolving populations. The game centrally features actions that result in demographic flow between states that may not conserve organism numbers. It is by this feature that the game encapsulate a range of other evolutionary games, and can encode almost very complex interactions between organisms, species and populations. The game's formalism is expounded and the nature of the game's equilibrium is discussed. This discussion leads to an algorithm for numerically determining the stable equilibrium points which is exemplified in the context of a modified Hawk-Dove game. The game's flexibility for modeling population dynamics is evaluated and compared with other evolutionary games.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hongying Wen ◽  
Kairong Liang ◽  
Yiquan Li

Internet public opinion events at universities in China occurred frequently, creating painful repercussions for reputation and stability of colleges and universities. To better cope with the problem, this paper explores an evolutionary mechanism of the university Internet public opinion events. Firstly, we discuss the interactions and behavior of three key participants: an Internet medium, university students as a whole, and administration. Secondly, we construct a tripartite evolutionary game model consisting of an Internet medium, student group, and university administration and then analyze and obtain the differential dynamic equations and equilibrium points. Subsequently, the evolutionary stable equilibrium is further analyzed. Finally, we employ numerical studies to examine how the tripartite behavior choices affect evolutionary paths and evolutionary equilibrium strategies. Results are derived as follows: under certain conditions, there exists an asymptotically stable equilibrium point for the tripartite evolutionary game. On the one hand, appropriate penalties and rewards should be provided to foster objectives and fair behaviors of the network medium. On the other hand, university students should be educated and guided to deal rationally with negative effects of Internet public opinion events. Moreover, online real-name authentication is an important and necessary measure. Finally, the university administration should release truthful, timely, and comprehensive information of Internet public opinion events to mitigate potential negative impacts.


2015 ◽  
Vol 17 (02) ◽  
pp. 1540016 ◽  
Author(s):  
Philippe Uyttendaele ◽  
Frank Thuijsman

In this paper, we examine several options for modeling local interactions within the framework of evolutionary game theory. Several examples show that there is a major difference between population dynamics using local dynamics versus global dynamics. Moreover, different modeling choices may lead to very diverse results.


2019 ◽  
Vol 10 (3) ◽  
pp. 641-663 ◽  
Author(s):  
Manh Hong Duong ◽  
The Anh Han

AbstractIn this paper, we study the number of equilibria of the replicator–mutator dynamics for both deterministic and random multi-player two-strategy evolutionary games. For deterministic games, using Descartes’ rule of signs, we provide a formula to compute the number of equilibria in multi-player games via the number of change of signs in the coefficients of a polynomial. For two-player social dilemmas (namely the Prisoner’s Dilemma, Snow Drift, Stag Hunt and Harmony), we characterize (stable) equilibrium points and analytically calculate the probability of having a certain number of equilibria when the payoff entries are uniformly distributed. For multi-player random games whose pay-offs are independently distributed according to a normal distribution, by employing techniques from random polynomial theory, we compute the expected or average number of internal equilibria. In addition, we perform extensive simulations by sampling and averaging over a large number of possible payoff matrices to compare with and illustrate analytical results. Numerical simulations also suggest several interesting behaviours of the average number of equilibria when the number of players is sufficiently large or when the mutation is sufficiently small. In general, we observe that introducing mutation results in a larger average number of internal equilibria than when mutation is absent, implying that mutation leads to larger behavioural diversity in dynamical systems. Interestingly, this number is largest when mutation is rare rather than when it is frequent.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1726
Author(s):  
Simo Sun ◽  
Hui Yang ◽  
Guanghui Yang ◽  
Jinxiu Pi

Based on a tripartite game model among suppliers of public goods, consumers, and the government, a tripartite repeated game model is constructed to analyze the evolution mechanism of which suppliers supply at low prices, consumers purchase, and the government provides incentives, and to establish the dynamics system of a repeated game. The equilibrium points of the evolutionary game are solved, and among them, the equilibrium points are found to satisfy the parameter conditions of ESS. The numerical simulation is employed to verify the impact of penalty coefficients and discount factors on the stability of strategies, which are adopted by the three players in a tripartite repeated game on public goods, and scenario analyses are conducted. The research results of this paper could provide a reference for the government, suppliers, and consumers to make rapid decisions, who are in the supply chain of public goods, especially quasi-public goods, such as coal, water, electricity, and gas, and help them to obtain stable incomes and then ensure the stable operation of the market.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 336
Author(s):  
Askhat Diveev ◽  
Elizaveta Shmalko

This article presents a study devoted to the emerging method of synthesized optimal control. This is a new type of control based on changing the position of a stable equilibrium point. The object stabilization system forces the object to move towards the equilibrium point, and by changing its position over time, it is possible to bring the object to the desired terminal state with the optimal value of the quality criterion. The implementation of such control requires the construction of two control contours. The first contour ensures the stability of the control object relative to some point in the state space. Methods of symbolic regression are applied for numerical synthesis of a stabilization system. The second contour provides optimal control of the stable equilibrium point position. The present paper provides a study of various approaches to find the optimal location of equilibrium points. A new problem statement with the search of function for optimal location of the equilibrium points in the second stage of the synthesized optimal control approach is formulated. Symbolic regression methods of solving the stated problem are discussed. In the presented numerical example, a piece-wise linear function is applied to approximate the location of equilibrium points.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Guoqi Li ◽  
Kiruthika Ramanathan ◽  
Ning Ning ◽  
Luping Shi ◽  
Changyun Wen

As can be represented by neurons and their synaptic connections, attractor networks are widely believed to underlie biological memory systems and have been used extensively in recent years to model the storage and retrieval process of memory. In this paper, we propose a new energy function, which is nonnegative and attains zero values only at the desired memory patterns. An attractor network is designed based on the proposed energy function. It is shown that the desired memory patterns are stored as the stable equilibrium points of the attractor network. To retrieve a memory pattern, an initial stimulus input is presented to the network, and its states converge to one of stable equilibrium points. Consequently, the existence of the spurious points, that is, local maxima, saddle points, or other local minima which are undesired memory patterns, can be avoided. The simulation results show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document