scholarly journals Inexpensive Piezoelectric Elements for Nozzle Contact Detection and Bed Levelling in FFF 3D Printers

Author(s):  
Mike Simpson ◽  
Simon Khoury

Inexpensive piezoelectric diaphragms can be used as sensors to facilitate both nozzle height setting and bed levelling in FFF (Fused Filament Fabrication) 3D printers. A variety of probes have been developed by the authors and others to utilize piezoelectric diaphragms both under the build stage and in the printer head. The reliability, repeatability and sensitivity of these probes has been investigated along with such practical considerations as usability in different environments, the functional life of piezoelectric diaphragms in this use and what improvement to print quality may be obtained. A probe using a piezoelectric diaphragm has been developed and released as an open source product, this probe as well as kits for making probes are available and are proving reliable. The conclusion is that piezoelectric diaphragms are equal to or better than other technologies used for nozzle probing.

Author(s):  
Michael Simpson ◽  
Simon Khoury

Inexpensive piezoelectric diaphragms can be used as sensors to facilitate both nozzle height setting and bed levelling in FFF (Fused Filament Fabrication) 3D printers. A variety of probes have been developed by the authors and others to utilize piezoelectric diaphragms both under the build stage and in the printer head. The reliability, repeatability and sensitivity of these probes has been investigated along with such practical considerations as usability in different environments, the functional life of piezoelectric diaphragms in this use and what improvement to print quality may be obtained. A probe using a piezoelectric diaphragm has been developed and released as an open source product, this probe as well as kits for making probes are available and are proving reliable. The conclusion is that piezoelectric diaphragms are equal to or better than other technologies used for nozzle probing.


Author(s):  
Michael Simpson ◽  
Simon Khoury

Inexpensive piezoelectric diaphragms can be used as sensors to facilitate both nozzle height setting and build platform leveling in FFF (Fused Filament Fabrication) 3D printers. Tests simulating nozzle contact are conducted to establish the available output and an output of greater than 8 Volts found at 20 ºC, a value which is readily detectable by simple electronic circuits. Tests are also conducted at a temperature of 80 ºC and, despite a reduction of greater than 80% in output voltage, this is still detectable. The reliability of piezoelectric diaphragms is investigated by mechanically stressing samples over 100,000 cycles at both 20 ºC and 80 ºC and little loss of output over the test duration is found. The development of a nozzle contact sensor using a single piezoelectric diaphragm is described.


2020 ◽  
Vol 10 (24) ◽  
pp. 8967
Author(s):  
Victor Gil Muñoz ◽  
Luisa M. Muneta ◽  
Ruth Carrasco-Gallego ◽  
Juan de Juanes Marquez ◽  
David Hidalgo-Carvajal

The circular economy model offers great opportunities to companies, as it not only allows them to capture additional value from their products and materials, but also reduce the fluctuations of price-related risks and material supply. These risks are present in all kind of businesses not based on the circular economy. The circular economy also enables economic growth without the need for more resources. This is because each unit has a higher value as a result of recycling and reuse of products and materials after use. Following this circular economics framework, the Polytechnic University of Madrid (Universidad Politécnica de Madrid, UPM) has adopted strategies aimed at improving the circularity of products. In particular, this article provides the result of obtaining recycled PLA filament from waste originating from university 3D FFF (fused filament fabrication) printers and waste generated by “Coronamakers” in the production of visors and parts for PPEs (Personal Protective Equipment) during the lockdown period of COVID-19 in Spain. This filament is used in the production of 3D printed parts that university students use in their classes, so the circular loop is closed. The obtained score of Material Circularity Indicator (MCI) of this material has been calculated, indicating its high level of circularity.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 871
Author(s):  
Cheng Luo ◽  
Manjarik Mrinal ◽  
Xiang Wang ◽  
Ye Hong

In this study, we explore the deformation of a polymer extrudate upon the deposition on a build platform, to determine the bonding widths between stacked strands in fused-filament fabrication. The considered polymer melt has an extremely high viscosity, which dominates in its deformation. Mainly considering the viscous effect, we derive analytical expressions of the flat width, compressed depth, bonding width and cross-sectional profile of the filament in four special cases, which have different combinations of extrusion speed, print speed and nozzle height. We further validate the derived relations, using our experimental results on acrylonitrile butadiene styrene (ABS), as well as existing experimental and numerical results on ABS and polylactic acid (PLA). Compared with existing theoretical and numerical results, our derived analytic relations are simple, which need less calculations. They can be used to quickly predict the geometries of the deposited strands, including the bonding widths.


2021 ◽  
Author(s):  
Lucas Bragança ◽  
Jeronimo Penha ◽  
Michael Canesche ◽  
Dener Ribeiro ◽  
José Augusto M. Nacif ◽  
...  

FPGAs are suitable to speed up gene regulatory network (GRN) algorithms with high throughput and energy efficiency. In addition, virtualizing FPGA using hardware generators and cloud resources increases the computing ability to achieve on-demand accelerations across multiple users. Recently, Amazon AWS provides high-performance Cloud's FPGAs. This work proposes an open source accelerator generator for Boolean gene regulatory networks. The generator automatically creates all hardware and software pieces from a high-level GRN description. We evaluate the accelerator performance and cost for CPU, GPU, and Cloud FPGA implementations by considering six GRN models proposed in the literature. As a result, the FPGA accelerator is at least 12x faster than the best GPU accelerator. Furthermore, the FPGA reaches the best performance per dollar in cloud services, at least 5x better than the best GPU accelerator.


Mechanik ◽  
2016 ◽  
pp. 724-725
Author(s):  
Wojciech Kiński ◽  
Krzysztof Nalepa ◽  
Wojciech Miąskowski ◽  
Paweł Pietkiewicz
Keyword(s):  

Author(s):  
Salil S. Sule ◽  
Aliaksei L. Petsiuk ◽  
Joshua M. Pearce

Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, costs of the former and required electricity to operate the latter, limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified and reliable lab-scale centrifuge. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class fused filament fabrication (FFF) or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open source software. This paper provides the complete open source plans including instructions for fabrication and operation for a hand-powered centrifuge. This study successfully tested and validated the instrument, which can be operated anywhere in the world with no electricity inputs obtaining a radial velocity of over 1750rpm and over 50N of relative centrifugal force. Using commercial filament the instrument costs about US$25, which is less than half of all commercially available systems; however, the costs can be dropped further using recycled plastics on open source systems for over 99% savings. The results are discussed in the contexts of resource-constrained medical and scientific facilities.


Author(s):  
Svetlana Obydenkova ◽  
Nicholas C. Anzalone ◽  
Joshua M. Pearce

Purpose Isolated communities face a variety of inconveniences including severe remoteness, poor roads and extreme climate conditions, resulting in the lack of security of supply chains and exorbitant prices for cargo delivery. This paper aims to investigate the present advantages and prospects of applying 3-D printing to improve economics and everyday life of remote communities, reindeer herder case taken as an example. Design/methodology/approach This study covers the use of a low-cost open-source 3-D printer (RepRap) capable of fused filament fabrication to reduce operating costs for nomadic reindeer herder groups. Three case studies are provided for reindeer-specific applications to probe economic and technical viability of the technology, namely, ear-tags, electric fence components and lasso accessories. Findings 3-D printed objects feature technical characteristics similar to those of analogues available on the market while reducing the price by 63 per cent. Distributed 3-D printing reduces the cost of raw materials by 68 per cent and shipping costs by 50 because of lower trip frequency. If all reindeer herders globally were to adopt distributed manufacturing of the three aforementioned sample items only, their annual savings from such solution would amount to US$2m. The paper discovers other economic, entrepreneurial, technical and environmental opportunities offered by 3-D printing put to service the needs of remote communities. Research limitations As the paper is the first-ever study of 3-D printing potential applied to the reindeer husbandry case, it is based on a more thorough analysis of the techno-economic feasibility of the technology, while cultural and entrepreneurial factors have been discussed as preconditions only. Practical implications The paper might serve as a valuable source of information for entrepreneurs, as well as for students and academics for further case studies in this area. Originality/value In remote conditions, 3-D printing offers a more sustainable way of good manufacturing. Numerous open source designs already available for specialists, financial effectiveness, environmental benefits and vast opportunities for entrepreneurs are among the most promising advantages of the technology.


Sign in / Sign up

Export Citation Format

Share Document