scholarly journals High-Resolution Atmospheric Lead Pollution during the Roman Period Recorded in Belgian Ombrotrophic Peat Cores

Author(s):  
Mohammed Allan ◽  
Daniele L. Pinti ◽  
Bassam Ghaleb ◽  
Sophie Verheyden ◽  
Michel Crucifix ◽  
...  

Two peat cores from two bogs were used to reconstruct high–resolution changes in atmospheric Pb accumulation rate (Pb AR) in Belgium during the Roman period. The two records were compared to assess the reliability of peat cores as archives of atmospheric Pb deposition and to established histories of atmospheric emissions from anthropogenic sources. To address these issues we analyze Pb concentration and isotopes, using ICP-MS, LA-ICP-MS and MC-ICP-MS in two peat sections, spanning 1000 yr each. Lead concentrations in the two cores range from 0.1 to 60 μg g−1, with the maxima between 15 and 60 μg g−1. The average natural background of Pb AR was 0.005± 0.002 mg m-2 yr-1 and the maximum ranges from 0.7 to 1.2 mg m-2 yr-1 between 50 BC and AD 215. The highest Pb AR exceed the pre-Roman period values by a factor of 25-30. Pb isotopic composition indicates that mining and metallurgical activities were the predominant sources of pollution during the Roman period. The Pb AR and chronologies in the Belgian peat cores are consistent with those reported for other continental archives as lake sediments, peat and ice cores.

Author(s):  
Mohammed Allan ◽  
Daniele L. Pinti ◽  
Bassam Ghaleb ◽  
Sophie Verheyden ◽  
Nadine Mattielli ◽  
...  

Two peat cores from two bogs were used to reconstruct high–resolution changes in atmospheric Pb accumulation rate (Pb AR) in Belgium during the Roman period. The two records were compared to assess the reliability of peat cores as archives of atmospheric Pb deposition and to established histories of atmospheric emissions from anthropogenic sources. To address these issues we analyze Pb concentration and isotopes, using ICP-MS, LA-ICP-MS and MC-ICP-MS in two peat sections, spanning 1000 yr each. Lead concentrations in the two cores range from 0.1 to 60 μg g−1, with the maxima between 15 and 60 μg g−1. The average natural background of Pb AR was 0.005± 0.002 mg m-2 yr-1 and the maximum ranges from 0.7 to 1.2 mg m-2 yr-1 between 50 BC and AD 215. The highest Pb AR exceed the pre-Roman period values by a factor of 25-30. Pb isotopic composition indicates that mining and metallurgical activities were the predominant sources of pollution during the Roman period. The Pb AR and chronologies in the Belgian peat cores are consistent with those reported for other continental archives as lake sediments, peat and ice cores.


2018 ◽  
Vol 28 (4) ◽  
pp. 1329-1333
Author(s):  
Miodrag Šmelcerović

The protection of the environment and people’s health from negative influences of the pollution of air as a medium of the environment requires constant observing of the air quality in accordance with international standards, the analysis of emission and imission of polluting matters in the air, and their connection with the sources of pollution. Having in mind the series of laws and delegated legislations which define the field of air pollution, it is necessary to closely observe these long-term processes, discovering cause-and-effect relationships between the activities of anthropogenic sources of emission of polluting matters and the level of air degradation. The relevant evaluation of the air quality of a certain area can be conducted if the level of concentration of polluting matters characteristic for the pollution sources of this area is observed in a longer period of time. The data obtained by the observation of the air pollution are the basis for creation of the recovery program of a certain area. Vranje is a town in South Serbia where there is a bigger number of anthropogenic pollution sources that can significantly diminish the air quality. The cause-and-effect relationship of the anthropogenic sources of pollution is conducted related to the analysis of systematized data which are in the relevant data base of the authorized institution The Institute of Public Health Vranje, for the time period between the year of 2012. and 2017. By the analysis of data of imission concentrations of typical polluting matters, the dominant polluting matters were determined on the territory of the town of Vranje, the ones that are the causers of the biggest air pollution and the risk for people’s health. Analysis of the concentration of soot, sulfur dioxide and nitrogen oxides indicates their presence in the air of Vranje town area in concentrations that do not exceed the permitted limit values annually. The greatest pollution is caused by the soot content in the air, especially in the winter period when the highest number of days with the values above the limit was registered. By perceiving the influence of natural and anthropogenic factors, it is clear that the concentration of polluting matters can be decreased only by establishing control over anthropogenic sources of pollution, and thus it can be contributed to the improvement of the air quality of this urban environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariusz Sojka ◽  
Adam Choiński ◽  
Mariusz Ptak ◽  
Marcin Siepak

AbstractThe objective of this study was to analyse spatial variability of the trace elements (TEs) and rare earth elements (REEs) concentration in lake bottom sediments in Bory Tucholskie National Park (BTNP); Poland. The following research questions were posed: which factors have a fundamental impact on the concentration and spatial variability of elements in bottom sediments, which of the elements can be considered as indicators of natural processes and which are related to anthropogenic sources. The research material was sediments samples collected from 19 lakes. The concentrations of 24 TEs and 14 REEs were determined. The analyses were carried out using the inductively coupled plasma mass spectrometry (ICP-QQQ). Cluster analysis and principal component analysis were used to determine the spatial variability of the TEs and REEs concentrations, indicate the elements that are the indicators of natural processes and identify potential anthropogenic sources of pollution. The geochemical background value (GBV) calculations were made using 13 different statistical methods. However, the contamination of bottom sediments was evaluated by means of the index of geo-accumulation, the enrichment factor, the pollution load index, and the metal pollution index. The BTNP area is unique because of its isolation from the inflow of pollutants from anthropogenic sources and a very stable land use structure over the last 200 years. This study shows high variability of TE and REE concentrations in lake sediments. The values of geochemical indices suggest low pollution of lakes bottom sediments. It was found that TEs originated mainly from geogenic sources. However, the concentrations of Li, Ni, Sc, Se, Be, Se, Ag, Re, Tl, Cd, Sb and U may be related to the impact of point sources found mainly in the Ostrowite Lake. Almost all REEs concentrations were strongly correlated and their presence was linked to with geochemical processes. The elements allowing to identify natural processes and anthropogenic pollution sources were Cr, Co, Cu, Ag, Cd, Zn, Bi, Re, Ba, Al and Rb in TEs group and Nd, Gd, Yb, Lu, Eu, Dy and Ce in REEs group. The analysis shows high spatial variability of TE and REE concentrations in lake sediments. The values of geochemical indices point to low pollution of lakes sediments. The anthropogenic sources only for two lakes had an impact on concentrations of selected TEs and REEs. The analyses allowed to identify elements among TEs and REEs documenting geochemical processes and those indicating anthropogenic sources of pollution.


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


2013 ◽  
Vol 9 (3) ◽  
pp. 983-999 ◽  
Author(s):  
E. Capron ◽  
A. Landais ◽  
D. Buiron ◽  
A. Cauquoin ◽  
J. Chappellaz ◽  
...  

Abstract. Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.


2012 ◽  
Vol 6 (3) ◽  
pp. 675-686 ◽  
Author(s):  
V. Zagorodnov ◽  
O. Nagornov ◽  
T. A. Scambos ◽  
A. Muto ◽  
E. Mosley-Thompson ◽  
...  

Abstract. Two ice core boreholes of 143.18 m and 447.73 m (bedrock) were drilled during the 2009–2010 austral summer on the Bruce Plateau at a location named LARISSA Site Beta (66°02' S, 64°04' W, 1975.5 m a.s.l.). Both boreholes were logged with thermistors shortly after drilling. The shallow borehole was instrumented for 4 months with a series of resistance thermometers with satellite uplink. Surface temperature proxy data derived from an inversion of the borehole temperature profiles are compared to available multi-decadal records from weather stations and ice cores located along a latitudinal transect of the Antarctic Peninsula to West Antarctica. The LARISSA Site Beta profiles show temperatures decreasing from the surface downward through the upper third of the ice, and warming thereafter to the bed. The average temperature for the most recent year is −14.78°C (measured at 15 m depth, abbreviated T15). A minimum temperature of −15.8°C is measured at 173 m depth, and basal temperature is estimated to be −10.2°C. Current mean annual temperature and the gradient in the lower part of the measured temperature profile have a best fit with an accumulation rate of 1.9×103 kg m−2 a−1 and basal heat flux (q) of 88 mW m−2, if steady-state conditions are assumed. However, the mid-level temperature variations show that recent temperature has varied significantly. Reconstructed surface temperatures (Ts=T15) over the last 200 yr are derived by an inversion technique (Tikhonov and Samarskii, 1990). From this, we find that cold temperatures (minimum Ts=−16.2°C) prevailed from ~1920 to ~1940, followed by a gradual rise of temperature to −14.2°C around 1995, then cooling over the following decade and warming in the last few years. The coldest period was preceded by a relatively warm 19th century at T15≥−15°C. To facilitate regional comparisons of the surface temperature history, we use our T15 data and nearby weather station records to refine estimates of lapse rates (altitudinal, adjusted for latitude: Γa(l)). Good temporal and spatial consistency of Γa(l) over the last 35 yr are observed, implying that the climate trends observed here are regional and consistent over a broad altitude range.


2004 ◽  
Vol 39 ◽  
pp. 585-594 ◽  
Author(s):  
Susan Kaspari ◽  
Paul A. Mayewski ◽  
Daniel A. Dixon ◽  
Vandy Blue Spikes ◽  
Sharon B. Sneed ◽  
...  

AbstractThirteen annually resolved accumulation-rate records covering the last ~200 years from the Pine Island–Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island–Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (SOI) for sites near the ice divide, and periods of sustained negative SOI (1940–42, 1991–95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the mid-latitudes. The post-1970 increase in accumulation coupled with strong SLP–accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island– Thwaites drainage system.


1988 ◽  
Vol 10 ◽  
pp. 73-79 ◽  
Author(s):  
M.A.K. Khalil ◽  
R.A. Rasmussen

We analyzed ice cores from both northern and southern polar regions to determine the concentrations of nitrous oxide in the pre-industrial and ancient atmospheres from about 150 years to 3000 yearsB.P.We found that the pre-industrial concentration of nitrous oxide remained constant over the period we studied and that the average atmospheric concentration was 285 ± 1 ppb volume (90% confidence limits), representing about 2100 Tg (2100 × 1012g) of N20 in the atmosphere, whereas the average concentration in 1984 was about 307 ppb volume or 2260 Tg. This is a change of 22 ppb volume (160 Tg), or about 8%, between pre-industrial and present times. Now the rate of change is between 0.7 and 0.9 ppb volume/year or 5 and 6.5 Tg/year, which is a slow increase of about 0.3% per year. The changes observed are probably caused by increasing use of fossil fuels, particularly coal and oil, and perhaps to a lesser extent by the use of nitrogen fertilizers in recent years. The atmospheric lifetime of N2O is probably between 100 and 150 years. The pre-industrial concentrations, present levels, and a lifetime of 100 years are consistent with natural sources, mostly soils and oceans, of about 22 Tg/year and the present anthropogenic sources of about 8.7 Tg/year. In the next 50 years we expect nitrous oxide levels to reach 360–390 ppb volume, or about 16–25% more than present.


1988 ◽  
Vol 10 ◽  
pp. 57-62 ◽  
Author(s):  
G. Holdsworth ◽  
H.R. Krouse ◽  
E. Peake

An historical record of the deposition of common acids is contained in snow and ice cores taken from suitable sites in the accumulation zone of certain glaciers. Spatial and time-series data sets for trace-mineral acids have been obtained from snow-pit samples and ice cores from a number of mountain sites in Alberta, British Columbia, and the Northwest and Yukon Territories. In Alberta, it is possible to use temperate firn sites above 3460 m, although elution occurs during certain summers as indicated by isotopic and ionic data. This would also apply to sites of a similar latitude (52°±2°N) in British Columbia. In the Yukon Territory (≥60.5°N) reliable time series for the acid anions may be obtained from sites at altitudes above 3000 m. Elution provides a natural control for demonstrating that field sampling and subsequent analytical procedures do not introduce significant contamination. The Yukon data are compared with the net annual accumulation rate and with altitude. Recent data from the 5340 m Mt Logan site do not indicate any significant increase in natural background levels of snow acidity. Lightning, which is responsible for numerous forest fires in all provinces, is a possible natural source of nitric acid. Spring-summer peaks in nitrate concentration usually occur. In addition, forest-fire smoke may be a significant contributor to the mountain snow-pack chemistry in some years and must be considered when interpreting the Mt Logan core data. One Yukon profile seems to contain the signature from the 1986 Augustine volcanic eruption.


Sign in / Sign up

Export Citation Format

Share Document