scholarly journals Radar Data Analyses for a Single Rainfall Event and Their Application for Flow Simulation in an Urban Catchment Using the SWMM Model

Author(s):  
Mariusz Barszcz

In this study, regression analyses were used to find a relationship between the rain gauge rainfall rate R and radar reflectivity Z for the urban catchment of the Służewiecki Stream in Warsaw, Poland. Rainfall totals for 18 events which were measured at two rainfall stations were used for these analyses. Various methods for determining calculational values of radar reflectivity in reference to specific rainfall cells with 1-km resolution within an event duration were applied. The influence of each of these methods on the Z-R relationship was analyzed. The correction coefficient for data from the SRI (Surface Rainfall Intensity) product was established, in which the values of rainfall rate are calculated based on parameters a and b determined by Marshall and Palmer. Relatively good agreement between measured and estimated rainfall totals for the analyzed events was obtained using the Z-R relationships as well as the correction coefficient determined in this study. Rainfall depths estimated from radar data for two selected events were used to simulate flow hydrographs in the catchment using the SWMM (Storm Water Management Model) hydrodynamic model. Different scenarios were applied to investigate the stream response to changes in rainfall depths, in which the data both for 2 existing as well as 64 virtual rain gauges assigned to appropriate rainfall cells in the catchment were included.

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1007 ◽  
Author(s):  
Mariusz Barszcz

The disadvantage of radar measurements is that the obtained rainfall data is imprecise. Therefore, the use of radar data in hydrological applications usually requires correction. The main aim of the study was to verify and optimize various methods of estimating the rainfall depths for single events based on radar data, as well as determining their influence on the values of peak flow and outflow volume of hydrographs simulated using the SWMM (Storm Water Management Model) hydrodynamic model. Regression analyses were used to find a relationship between the rain gauge rainfall rate R and radar reflectivity Z for the urban catchment of the Służewiecki Stream in Warsaw, Poland. Five methods for determining calculational values of radar reflectivity in reference to specific rainfall cells with 1 km resolution within an event duration were applied. Moreover, the correction coefficient for data from the SRI (Surface Rainfall Intensity) product was established. The Z-R relationships determined in this study offer much better rainfall rate estimation as compared to Marshall-Palmer’s relationship. Different scenarios were applied to investigate the stream response to changes in rainfall depths estimated on the basis of radar data, in which the data both for 2 existing, as well as 64 virtual, rain gauges assigned to appropriate rainfall cells in the catchment were included. Relatively good agreement was achieved between the measured parameters of the hydrograph of flows and those simulated in response to rainfall depths which had been calculated for single events using the correction coefficient and the determined Z-R relationships. Radar estimates of rainfall depths based on the tested methods can be used as input data to the SWMM model for the purpose of simulating flows in the investigated urban catchment.


2016 ◽  
Vol 19 (2) ◽  
pp. 225-237 ◽  
Author(s):  
Sherien Fadhel ◽  
Miguel Angel Rico-Ramirez ◽  
Dawei Han

Merging rain gauge and radar data improves the accuracy of precipitation estimation for urban areas. Since the rain gauge network around the ungauged urban catchment is fixed, the relevant question relates to the optimal merging area that produces the best rainfall estimation inside the catchment. Thus, an incremental radar-gauge merging was performed by gradually increasing the distance from the centre of the study area, the number of merging gauges around it and the radar domain. The proposed adaptive merging scheme is applied to a small urban catchment in west Yorkshire, Northern England, for 118 extreme events from 2007 to 2009. The performance of the scheme is assessed using four experimental rain gauges installed inside the study area. The result shows that there is indeed an optimum radar-gauge merging area and consequently there is an optimum number of rain gauges that produce the best merged rainfall data inside the study area. Different merging methods produce different results for both classified and unclassified rainfall types. Although the scheme was applied on daily data, it is applicable to other temporal resolutions. This study has importance for other studies such as urban flooding analysis, since it provides improved rainfall estimation for ungauged urban catchments.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 306 ◽  
Author(s):  
Dominique Faure ◽  
Guy Delrieu ◽  
Nicolas Gaussiat

In the French Alps the quality of the radar Quantitative Precipitation Estimation (QPE) is limited by the topography and the vertical structure of precipitation. A previous study realized in all the French Alps, has shown a general bias between values of the national radar QPE composite and the rain gauge measurements: a radar QPE over-estimation at low altitude (+20% at 200 m a.s.l.), and an increasing underestimation at high altitudes (until −40% at 2100 m a.s.l.). This trend has been linked to altitudinal gradients of precipitation observed at ground level. This paper analyzes relative altitudinal gradients of precipitation estimated with rain gauges measurements in 2016 for three massifs around Grenoble, and for different temporal accumulations (yearly, seasonal, monthly, daily). Comparisons of radar and rain gauge accumulations confirm the bias previously observed. The parts of the current radar data processing affecting the bias value are pointed out. The analysis shows a coherency between the relative gradient values estimated at the different temporal accumulations. Vertical profiles of precipitation detected by a research radar installed at the bottom of the valley also show how the wide horizontal variability of precipitation inside the valley can affect the gradient estimation.


2010 ◽  
Vol 10 (1) ◽  
pp. 149-158 ◽  
Author(s):  
L. Alfieri ◽  
P. Claps ◽  
F. Laio

Abstract. The operational use of weather radars has become a widespread and useful tool for estimating rainfall fields. The radar-gauge adjustment is a commonly adopted technique which allows one to reduce bias and dispersion between radar rainfall estimates and the corresponding ground measurements provided by rain gauges. This paper investigates a new methodology for estimating radar-based rainfall fields by recalibrating at each time step the reflectivity-rainfall rate (Z-R) relationship on the basis of ground measurements provided by a rain gauge network. The power-law equation for converting reflectivity measurements into rainfall rates is readjusted at each time step, by calibrating its parameters using hourly Z-R pairs collected in the proximity of the considered time step. Calibration windows with duration between 1 and 24 h are used for estimating the parameters of the Z-R relationship. A case study pertaining to 19 rainfall events occurred in the north-western Italy is considered, in an area located within 25 km from the radar site, with available measurements of rainfall rate at the ground and radar reflectivity aloft. Results obtained with the proposed method are compared to those of three other literature methods. Applications are described for a posteriori evaluation of rainfall fields and for real-time estimation. Results suggest that the use of a calibration window of 2–5 h yields the best performances, with improvements that reach the 28% of the standard error obtained by using the most accurate fixed (climatological) Z-R relationship.


2020 ◽  
Vol 12 (11) ◽  
pp. 1709 ◽  
Author(s):  
Anna Jurczyk ◽  
Jan Szturc ◽  
Irena Otop ◽  
Katarzyna Ośródka ◽  
Piotr Struzik

A quantitative precipitation estimate (QPE) provides basic information for the modelling of many kinds of hydro-meteorological processes, e.g., as input to rainfall-runoff models for flash flood forecasting. Weather radar observations are crucial in order to meet the requirements, because of their very high temporal and spatial resolution. Other sources of precipitation data, such as telemetric rain gauges and satellite observations, are also included in the QPE. All of the used data are characterized by different temporal and spatial error structures. Therefore, a combination of the data should be based on quality information quantitatively determined for each input to take advantage of a particular source of precipitation measurement. The presented work on multi-source QPE, being implemented as the RainGRS system, has been carried out in the Polish national meteorological and hydrological service for new nowcasting and hydrological platforms in Poland. For each of the three data sources, different quality algorithms have been designed: (i) rain gauge data is quality controlled and, on this basis, spatial interpolation and estimation of quality field is performed, (ii) radar data are quality controlled by RADVOL-QC software that corrects errors identified in the data and characterizes its final quality, (iii) NWC SAF (Satellite Application Facility on support to Nowcasting and Very Short Range Forecasting) products for both visible and infrared channels are combined and the relevant quality field is determined from empirical relationships that are based on analyses of the product performance. Subsequently, the quality-based QPE is generated with a 1-km spatial resolution every 10 minutes (corresponding to radar data). The basis for the combination is a conditional merging technique that is enhanced by involving detailed quality information that is assigned to individual input data. The validation of the RainGRS estimates was performed taking account of season and kind of precipitation.


2013 ◽  
Vol 17 (8) ◽  
pp. 3095-3110 ◽  
Author(s):  
J. Liu ◽  
M. Bray ◽  
D. Han

Abstract. Mesoscale numerical weather prediction (NWP) models are gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations, especially the weather radar data, can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three-dimensional variational (3D-Var) data-assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauge observations, the radar data are assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types/combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation are evaluated by examining the rainfall temporal variations and total amounts which have direct impacts on rainfall–runoff transformation in hydrological applications. It is found that by solely assimilating radar data, the improvement of rainfall forecasts are not as obvious as assimilating meteorological data; whereas the positive effect of radar data can be seen when combined with the traditional meteorological data, which leads to the best rainfall forecasts among the five modes. To further improve the effect of radar data assimilation, limitations of the radar correction ratio developed in this study are discussed and suggestions are made on more efficient utilisation of radar data in NWP data assimilation.


2013 ◽  
Vol 52 (8) ◽  
pp. 1817-1835 ◽  
Author(s):  
Jordi Figueras i Ventura ◽  
Pierre Tabary

AbstractIn 2012 the Météo France metropolitan operational radar network consists of 24 radars operating at C and S bands. In addition, a network of four X-band gap-filler radars is being deployed in the French Alps. The network combines polarimetric and nonpolarimetric radars. Consequently, the operational radar rainfall algorithm has been adapted to process both polarimetric and nonpolarimetric data. The polarimetric processing chain is available in two versions. In the first version, now operational, polarimetry is only used to correct for attenuation and filter out clear-air echoes. In the second version there is a more extensive use of polarimetry. In particular, the specific differential phase Kdp is used to estimate rainfall rate in intense rain. The performance of the three versions of radar rainfall algorithms (conventional, polarimetric V1, and polarimetric V2) at different frequency bands (S, C, and X) is evaluated by processing radar data of significant events offline and comparing hourly radar rainfall accumulations with hourly rain gauge data. The results clearly show a superior performance of the polarimetric products with respect to the nonpolarimetric ones at all frequency bands, but particularly at higher frequency. The second version of the polarimetric product, which makes a broader use of polarimetry, provides the best overall results.


Author(s):  
Igor Paz ◽  
Bernard Willinger ◽  
Auguste Gires ◽  
Laurent Monier ◽  
Christophe Zobrist ◽  
...  

This paper presents a comparison between rain gauges, C-band and X-band radar data over an instrumented and regulated catchment of the Paris region, as well as their respective hydrological impacts with the help of flow observations and a semi-distributed hydrological model. Both radars confirm the high spatial variability of the rainfall down to their space resolution (respectively one kilometer and 250 m) and therefore underscore limitations of semi-distributed simulations. The use of the polarimetric capacity of the Météo-France C-band radar was limited to corrections of the horizontal reflectivity and its rainfall estimates are adjusted with the help of a rain gauge network. On the contrary, neither calibration was performed for the polarimetric X-band radar of the Ecole des Ponts ParisTech (below called ENPC X-band radar), nor any optimization of its scans. In spite of that and the non-negligible fact that the catchment was much closer to the C-band radar than to the X-band radar (20 km vs. 40 km), the latter seems to perform at least as well as the former, but with a higher scale resolution. This characteristic was best highlighted with the help of a multifractal analysis of the respective radar data, which also shows that the X-band radar was able to pick up a few extremes that were smoothed out by the C-band radar.


2007 ◽  
Vol 10 ◽  
pp. 111-115
Author(s):  
C. I. Christodoulou ◽  
S. C. Michaelides

Abstract. Weather radars are used to measure the electromagnetic radiation backscattered by cloud raindrops. Clouds that backscatter more electromagnetic radiation consist of larger droplets of rain and therefore they produce more rain. The idea is to estimate rain rate by using weather radar as an alternative to rain-gauges measuring rainfall on the ground. In an experiment during two days in June and August 1997 over the Italian-Swiss Alps, data from weather radar and surrounding rain-gauges were collected at the same time. The statistical KNN and the neural SOM classifiers were implemented for the classification task using the radar data as input and the rain-gauge measurements as output. The proposed system managed to identify matching pattern waveforms and the rainfall rate on the ground was estimated based on the radar reflectivities with a satisfactory error rate, outperforming the traditional Z/R relationship. It is anticipated that more data, representing a variety of possible meteorological conditions, will lead to improved results. The results in this work show that an estimation of rain rate based on weather radar measurements treated with statistical and neural classifiers is possible.


MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 49-56
Author(s):  
S.JOSEPHINE VANAJA ◽  
B.V. MUDGAL ◽  
S.B. THAMPI

Precipitation is a significant input for hydrologic models; so, it needs to be quantified precisely. The measurement with rain gauges gives the rainfall at a particular location, whereas the radar obtains instantaneous snapshots of electromagnetic backscatter from rain volumes that are then converted into rainfall via algorithms. It has been proved that the radar measurement of areal rainfall can outperform rain gauge network measurements, especially in remote areas where rain gauges are sparse, and remotely sensed satellite rainfall data are too inaccurate. The research focuses on a technique to improve rainfall-runoff modeling based on radar derived rainfall data for Adyar watershed, Chennai, India. A hydrologic model called ‘Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS)’ is used for simulating rainfall-runoff processes. CARTOSAT 30 m DEM is used for watershed delineation using HEC-GeoHMS. The Adyar watershed is within 100 km radius circle from the Doppler Weather Radar station, hence it has been chosen as the study area. The cyclonic storm Jal event from 4-8 November, 2010 period is selected for the study. The data for this period are collected from the Statistical Department, and the Cyclone Detection Radar Centre, Chennai, India. The results show that the runoff is over predicted using calibrated Doppler radar data in comparison with the point rainfall from rain gauge stations.


Sign in / Sign up

Export Citation Format

Share Document