scholarly journals Polyethylene Glycol (PEG) Exposure with Antihemophilic Factor (Recombinant), PEGylated (rurioctocog alfa pegol) and Other Parenteral Therapies Indicated for the Pediatric Population: History and Safety

Author(s):  
Reinhard Stidl ◽  
Michael Denne ◽  
Jimena Goldstine ◽  
Bill Kadish ◽  
Katherine I. Korakas ◽  
...  

Polyethylene glycol (PEG) is an inert, water soluble polymer, used for decades in pharmaceuticals. Although PEG is considered safe, concerns persist about the potential adverse effects of long-term exposure to PEG-containing therapies, specifically in children, following the introduction of PEGylated recombinant factor products used for the treatment of hemophilia. Given the absence of long-term surveillance data, and to evaluate the potential risk, we estimated PEG exposure in the pediatric population receiving US Food and Drug Administration-approved parenteral therapies with pediatric indications. We used a range of pediatric weights and doses based on prescribing information (PI) or treatment guidelines. PIs and reporting websites were searched for information about adverse events (AEs). For a child weighing 50 kg on the highest prophylactic dose of a FVIII product, the range of total PEG exposure was 40–21,840 mg/year; for FIX products, the range was 13–1342 mg/year; and for other products, the range was 383–26,743 mg/year, primarily as a derivative excipient. No AE patterns attributable to PEG were found for any of these products, including potential renal, neurological, or hepatic AEs. Our analyses suggest the pediatric population has had substantial exposure to PEG for several decades, with no evidence of adverse consequences.

2018 ◽  
Vol 11 (3) ◽  
pp. 75 ◽  
Author(s):  
Reinhard Stidl ◽  
Michael Denne ◽  
Jimena Goldstine ◽  
Bill Kadish ◽  
Katherine Korakas ◽  
...  

Polyethylene glycol (PEG) is an inert, water soluble polymer, used for decades in pharmaceuticals. Although PEG is considered safe, concerns persist about the potential adverse effects of long-term exposure to PEG-containing therapies, specifically in children, following the introduction of PEGylated recombinant factor products used for the treatment of hemophilia. Given the absence of long-term surveillance data, and to evaluate the potential risk, we estimated PEG exposure in the pediatric population receiving PEGylated therapies with pediatric indications administered intravenously or intramuscularly. We used a range of pediatric weights and doses based on prescribing information (PI) or treatment guidelines. PIs and reporting websites were searched for information about adverse events (AEs). For a child weighing 50 kg on the highest prophylactic dose of a FVIII product, the range of total PEG exposure was 40–21,840 mg/year; for factor IX (FIX) products, the range was 13–1342 mg/year; and for other products, the range was 383–26,743 mg/year, primarily as a derivative excipient. No AE patterns attributable to PEG were found for any of these products, including potential renal, neurological, or hepatic AEs. Our analyses suggest the pediatric population has had substantial exposure to PEG for several decades, with no evidence of adverse consequences.


2016 ◽  
Vol 40 (5) ◽  
pp. 4513-4518 ◽  
Author(s):  
Guang Li ◽  
Farong Tao ◽  
Qian Liu ◽  
Liping Wang ◽  
Zhuang Wei ◽  
...  

A novel reversible colorimetric chemosensor based on polyethylene glycol has been developed to detect Cu2+ ions in pure aqueous solution.


2021 ◽  
Vol 78 ◽  
pp. 1-13
Author(s):  
A. Romanov ◽  
K. Ly ◽  
B. Kirchoff

Polyethylene glycol (PEG) is a non-carcinogenic, water-soluble polymer of ethylene oxide that has found wide applicability in industry and medicine, and has been used to embed and section small animal and plant tissues. Here we investigate the use of PEG for the rapid embedding of larger plant tissues. Ovaries of Musa velutina, Heliconia psittacorum and eight other species were embedded with a mixture of PEG 1450 and PEG 4000. It was found that tissues up to 6.5 × 10 mm could easily be embedded and sectioned in PEG. Embedded tissues could be stored at room temperature for up to 5 days with no detrimental effects. Sections were easily cut at 8–15 μm on a rotary microtome. PEG embedding resulted in equal or better tissue differentiation, better retention of cell inclusions, and reduced shrinkage compared with paraffin embedding. The process was also faster, requiring only 3–6 h compared with the 2 days needed for paraffin embedding. PEG is a rapid-embedding medium suitable for use with even large plant tissues.


1995 ◽  
Vol 43 (6) ◽  
pp. 637-643 ◽  
Author(s):  
K A Holtham ◽  
N B Slepecky

We describe a new method for embedding small specimens in polyethylene glycol (PEG) 4000. This method preserves cell morphology and provides sensitive immunocytochemical labeling with excellent subcellular resolution. Small tissues are embedded in agarose so that they can be grouped together and oriented for sectioning before infiltration with PEG 4000, a water-soluble polymer. Fixation, embedding, sectioning, and staining can be performed in 1 day. Results from immunocytochemical studies localizing actin and tubulin on 0.5-micron sections of PEG-embedded specimens are compared with those obtained on semi-thin sections of araldite-embedded specimens and demonstrate the ease, speed, and increased sensitivity of this embedding method.


2005 ◽  
Vol 475-479 ◽  
pp. 1317-1320
Author(s):  
Zhong Zhou Yi ◽  
Shi-en Wang ◽  
Yong Huang

Ceramic gelcasting has to be performed in nitrogen to avoid surface-exfoliation and crack of the green body. The rapid drying of gelled bodies can cause nonuniform shrinkage. Non-uniform drying in various regions due to the solvent gradient, induces structural and residual stresses which cause defects, such as cracking, warpage and the other malformations. These malformations can be minimized or eliminated via adding a proper amount of water-soluble polymer polyethylene glycol(PEG).This study concentrates attention on dispersion, rheological property and gelation behavior in the new system, The flexural strength and microstructure of ZrO2 green bodies were measured and observed.


2019 ◽  
Author(s):  
D Kohoutova ◽  
A Tringali ◽  
G Paparella ◽  
V Perri ◽  
I Boškoski ◽  
...  

2011 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Norfaezah Mazalan ◽  
Mazatulikhma Mat Zain ◽  
Nor Saliyana Jumali ◽  
Norhanim Mohalid ◽  
Zurina Shaameri ◽  
...  

Recently, research and development in the field of drug delivery systems (DDS) facilitating site-specific therapy has reached significant progression. DDS based on polymer micelles, coated micro- and nanoparticles, and various prodrug systems including water-soluble polymer have been prepared and extensively studied as novel drugs designed for cancer chemotherapy and brain delivery. Since polymers are going to be used in human, this study has the interest of testing two types of polymer, polyimides (PI) and polyphenylenevinylene (PPV) on neuronal cells. The objective of this study was to determine the possible neurotoxicity and potential neuroprotective effects of PI and PPV towards SH-SY5Y neuronal cells challenged by hydrogen peroxide (H2O2) as an oxidant. Cells were pretreated with either PI or PPV for 1 hour followed by incubation for 24 hour with 100 µM of H2O2. MTS assay was used to assess cell viability. Results show that PI and PPV are not harmful within the concentration up to 10 µM and 100 µM, respectively. However, PI and PPV do not protect neuronal cells against toxicity induced by H2O2 or further up the cell death.


2020 ◽  
Vol 26 (1) ◽  
pp. 76-81
Author(s):  
George H. Tse ◽  
Feng Y. Jiang ◽  
Matthias W. R. Radatz ◽  
Saurabh Sinha ◽  
Hesham Zaki

Aneurysmal bone cysts (ABCs) are an uncommon entity predominantly encountered in the pediatric population. The skull is rarely involved, but these cysts have been reported to arise in the skull base. Traditional treatment has been with surgery alone; however, there is a gathering body of literature that reports alternative treatments that can achieve long-term disease-free survival. However, these therapies are predominantly directed at peripheral skeletal lesions. To the authors’ knowledge, this report is the first to describe long-term follow-up of the efficacy of Gamma Knife stereotactic radiosurgery for treatment of ABC residuum in the skull base that resulted in long-term patient stability and likely ABC obliteration.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fiona C. Simpson ◽  
Christopher D. McTiernan ◽  
Mohammad Mirazul Islam ◽  
Oleksiy Buznyk ◽  
Philip N. Lewis ◽  
...  

AbstractThe long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.


Sign in / Sign up

Export Citation Format

Share Document