corneal regeneration
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 37)

H-INDEX

19
(FIVE YEARS 5)

Author(s):  
S.V. Saroyan ◽  
◽  
S.V. Saroyan ◽  
◽  

This article summarizes our clinical treatment results for various stages of corneal sequestrum in 24 cats using mesenchymal stem cell secretome (cytokines / growth factors). Our results show that the regenerative drug used in the study had a positive effect on the quality and speed of the corneal regeneration and effectively reduced inflammation during the post-operative period, which contributed to the lack of any rejection of donor cornea.


Author(s):  
Gayatri Patel ◽  
Kyung-Sun Na ◽  
Hyun Jong Lee ◽  
Won-Gun Koh

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 163
Author(s):  
Amy C. Madl ◽  
David Myung

Over 6.2 million people worldwide suffer from moderate to severe vision loss due to corneal disease. While transplantation with allogenic donor tissue is sight-restoring for many patients with corneal blindness, this treatment modality is limited by long waiting lists and high rejection rates, particularly in patients with severe tissue damage and ocular surface pathologies. Hydrogel biomaterials represent a promising alternative to donor tissue for scalable, nonimmunogenic corneal reconstruction. However, implanted hydrogel materials require invasive surgeries and do not precisely conform to tissue defects, increasing the risk of patient discomfort, infection, and visual distortions. Moreover, most hydrogel crosslinking chemistries for the in situ formation of hydrogels exhibit off-target effects such as cross-reactivity with biological structures and/or result in extractable solutes that can have an impact on wound-healing and inflammation. To address the need for cytocompatible, minimally invasive, injectable tissue substitutes, host–guest interactions have emerged as an important crosslinking strategy. This review provides an overview of host–guest hydrogels as injectable therapeutics and highlights the potential application of host–guest interactions in the design of corneal stromal tissue substitutes.


Vision ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 43
Author(s):  
Sohil Amin ◽  
Elmira Jalilian ◽  
Eitan Katz ◽  
Charlie Frank ◽  
Ghasem Yazdanpanah ◽  
...  

The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.


2021 ◽  
pp. 101600
Author(s):  
Mohsen Ghiasi ◽  
Khosrow Jadidi ◽  
Mehrdad Hashemi ◽  
Hamed Zare ◽  
Ali Salimi ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Qian Yu ◽  
Soma Biswas ◽  
Gang Ma ◽  
Peiquan Zhao ◽  
Baojie Li ◽  
...  

Disorders of the transparent cornea affect millions of people worldwide. However, how to maintain and/or regenerate this organ remains unclear. Here, we show that Rela (encoding a canonical NF-kB subunit) ablation in K14+ corneal epithelial stem cells not only disrupts corneal regeneration but also results in age-dependent epithelial deterioration, which triggers aberrant wound healing processes including stromal remodeling, neovascularization, epithelial metaplasia, and plaque formation at the central cornea. These anomalies are largely recapitulated in normal mice that age naturally. Mechanistically, Rela deletion suppresses expression of Aldh1a1, an enzyme required for retinoic acid synthesis from vitamin A. Retinoic acid administration blocks development of ocular anomalies in Krt14-Cre; Relaf/f mice and naturally aged mice. Moreover, epithelial metaplasia and plaque formation are preventable by inhibition of angiogenesis. This study thus uncovers major mechanisms governing corneal maintenance, regeneration and aging and identifies the NF-kB-retinoic acid pathway as a therapeutic target for corneal disorders.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fiona C. Simpson ◽  
Christopher D. McTiernan ◽  
Mohammad Mirazul Islam ◽  
Oleksiy Buznyk ◽  
Philip N. Lewis ◽  
...  

AbstractThe long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 319
Author(s):  
Promita Bhattacharjee ◽  
Mark Ahearne

Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications.


2021 ◽  
Vol 10 (2) ◽  
pp. 317
Author(s):  
Gabriele Saccu ◽  
Valeria Menchise ◽  
Cristina Giordano ◽  
Daniela Delli Castelli ◽  
Walter Dastrù ◽  
...  

Ocular chemical and thermal burns are frequent causes of hospitalization and require immediate interventions and care. Various surgical and pharmacological treatment strategies are employed according to damage severity. Controlling inflammation and neovascularization while promoting normal ocular surface anatomy and function restoration is the principal aim. In the most severe cases, when epithelial healing is severely affected, reconstruction of the ocular surface may be a valid option, which, however, requires expertise, adequate instruments, and qualified donors. Numerous endogenous and exogenous strategies have been considered for corneal repair. Among these, stem cells and their derivatives have offered numerous attractive possibilities in finding an effective way in stimulating corneal regeneration. Limbal epithelial stem cells and mesenchymal cells from the ocular tissue as well as from various sources have demonstrated their effectiveness in dampening neovascularization, scarring, and inflammation, while promoting epithelialization of the injured cornea. Moreover, a plethora of cytokines and growth factors, and extracellular vesicles, which constitute the secretome of these cells, work in concert to enhance wound healing. In this review, we provide an update on the recent potential therapeutic avenues and clinical applications of stem cells and their products in corneal regeneration after burn injury, as well as current imaging strategies for monitoring therapeutic efficacy and damage resolution.


Sign in / Sign up

Export Citation Format

Share Document