scholarly journals Multijetfusion Manufacturing Parameters for Watertightness, Strength and Tolerances

Author(s):  
Sergio Morales-Planas ◽  
Joaquim Minguella-Canela ◽  
Jordi Lluma-Fuentes ◽  
Jose Antonio Travieso-Rodriguez ◽  
Andrés-Amador García-Granada

The aim of this paper is to explore the watertightness behaviour for high pressure applications using Multijetfusion technology and polyamide 12 as a material. It reports an efficient solution for manufacturing functional prototypes and final parts for water pressure applications. It provides manufacturing rules to engineers in the pressurized product development process up to 10 MPa of nominal pressure. The research findings show manufacturers the possibility of using additive manufacturing as an alternative to traditional manufacturing. Water leakage was studied using different printing orientations and wall thickness for a range of pressure values. An industrial ball valve was printed and validated with the ISO 9393 standard also meeting tolerance requirements. This paper is a pioneering approach to the additive manufacturing of high performance fluid handling components. This approach solves the problem of leakage caused by porosity in additive manufacturing technologies

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1472 ◽  
Author(s):  
Sergio Morales-Planas ◽  
Joaquim Minguella-Canela ◽  
Jordi Lluma-Fuentes ◽  
Jose Travieso-Rodriguez ◽  
Andrés-Amador García-Granada

The aim of this paper is to explore the watertightness behaviour for high pressure applications using Multi Jet Fusion technology and polyamide 12 as a material. We report an efficient solution for manufacturing functional prototypes and final parts for water pressure applications and provide manufacturing rules for engineers in the pressurized product development process for up to 10 MPa of nominal pressure. The research findings show manufacturers the possibility of using additive manufacturing as an alternative to traditional manufacturing. Water leakage was studied using different printing orientations and wall thicknesses for a range of pressure values. An industrial ball valve was printed and validated with the ISO 9393 standard as also meeting tolerance requirements. This paper is a pioneering approach to the additive manufacturing of high-performance fluid handling components. This approach solves the problem of leakage caused by porosity in additive manufacturing technologies.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Marina Garcia-Cardosa ◽  
Francisco-Javier Granados-Ortiz ◽  
Joaquín Ortega-Casanova

In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.


2018 ◽  
Vol 190 ◽  
pp. 02005 ◽  
Author(s):  
Markus Hirtler ◽  
Angelika Jedynak ◽  
Benjamin Sydow ◽  
Alexander Sviridov ◽  
Markus Bambach

Within the scope of consumer-oriented production, individuality and cost-effectiveness are two essential aspects, which can barely be met by traditional manufacturing technologies. Conventional metal forming techniques are suitable for large batch sizes. If variants or individualized components have to be formed, the unit costs rise due to the inevitable tooling costs. For such applications, additive manufacturing (AM) processes, which do not require tooling, are more suitable. Due to the low production rates and limited build space of AM machines, the manufacturing costs are highly dependent on part size and batch size. Hence, a combination of both manufacturing technologies i.e. conventional metal forming and additive manufacturing seems expedient for a number of applications. The current study develops a process chain combining forming and additive manufacturing. First, a semi-finished product is formed with forming tools of reduced complexity and then finished by additive manufacturing. This research investigates the addition of features using AlSi12 created by Wire Arc Additive Manufacturing (WAAM) on formed EN-AW 6082 preforms. By forming, the strength of the material was increased, while this effect was partly reduced by the heat input of the WAAM process.


2018 ◽  
Vol 188 ◽  
pp. 03020
Author(s):  
Antonios Tsakiris ◽  
Christos Salpistis ◽  
Athanassios Mihailidis

Additive Manufacturing (AM) has been widely considered a key factor for innovative design. However, the utilization of AM has not been as high as expected, although the technology offers key innovative design capabilities, weight reduction, parts count and assembly consolidation as well as material saving. This low utilization is attributed to the lack of AM understanding, mature CAE/CAM software tools addressing AM specific issues such as design support structure generation and removal, residual stresses, surface quality. In most cases, Design for AM (DfAM) is a crucial requisite for a “Design Right Once” approach. Such an approach is shown in the current study using three parts as example: an arthropod’s leg, a gearshift drum and an electric motor mounting frame. The implementation of geometrical conformal lattice structures and lattices with variable density are discussed. A structured design approach is presented and design dilemmas are solved in terms of a DfAM approach. Primary design optimizations are evaluated. Weight reduction is considered throughout the design and free form surfaces are being used. “Freedom to Design” principle is also portrayed and assembly parts consolidation occurs as a natural process of DfAM in comparison with previous design practices. It is concluded that, even from the primary design phase the design engineer can reveal his creativity because of the absence of constraints set by the traditional manufacturing technologies.


Author(s):  
Benjamin Graybill ◽  
Ming Li ◽  
David Malawey ◽  
Chao Ma ◽  
Juan-Manuel Alvarado-Orozco ◽  
...  

Additive manufacturing enables the design of components with intricate geometries that can be manufactured with lead times much shorter when compared with conventional manufacturing. The ability to manufacture components out of high-performance metals through additive manufacturing technologies attracts industries that wish to develop more complex parts, but require components to maintain their structural integrity in demanding operating environments. Nickel-based superalloys are of particular interest due to their excellent mechanical, creep, wear, and oxidation properties at both ambient and elevated temperatures. However, relationship between process parameters and the resulting microstructure is still not well understood. The control of the microstructure, in particular the precipitation of secondary phases, is of critical importance to the performance of nickel-based superalloys. This paper reviews the additive manufacturing methods used to process nickel-based superalloys, the influence of the process parameters on microstructure and mechanical properties, the effectiveness of various heat treatment regimens, and the addition of particles in order to further improve mechanical properties.


2014 ◽  
Vol 88 ◽  
pp. 60-64 ◽  
Author(s):  
Martin Schwentenwein ◽  
Peter Schneider ◽  
Johannes Homa

Albeit widely established in plastic and metal industry, additive manufacturing technologies are still a rare sight in the field of ceramic manufacturing. This is mainly due to the requirements for high performance ceramic parts, which no additive manufacturing process was able to meet to date.The Lithography-based Ceramic Manufacturing (LCM)-technology which enables the production of dense and precise ceramic parts by using a photocurable ceramic suspension that is hardened via a photolithographic process. This new technology not only provides very high accuracy, it also reaches high densities for the sintered parts. In the case of alumina a relative density of over 99.4 % and a 4-point-bending strength of almost 430 MPa were realized. Thus, the achievable properties are similar to conventional manufacturing methods, making the LCM-technology an interesting complement for the ceramic industry.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


Author(s):  
Julius Schurb ◽  
Matthias Hoebel ◽  
Hartmut Haehnle ◽  
Harald Kissel ◽  
Laura Bogdanic ◽  
...  

Additive manufacturing and in particular Selective Laser Melting (SLM) are manufacturing technologies that can become a game changer for the production of future high performance hot gas path parts. SLM radically changes the design process giving unprecedented freedom of design and enabling a step change in part performance. Benefits are manifold, such as reduced cooling air consumption through more efficient cooling schemes, reduced emissions through better mixing in the combustion process and reduced cost through integrated part design. GE is already making use of SLM for its gas turbine components based on sound experience for new part production and reconditioning. The paper focuses on: a) Generic advantages of rapid manufacturing and design considerations for hot gas path parts b) Qualification of processes and additive manufacturing of engine ready parts c) SLM material considerations and properties validation d) Installation and validation in a heavy duty GT Additive Manufacturing (AM) of hot gas path components differs significantly from known process chains. All elements of this novel manufacturing route had to be established and validated. This starts with the selection of the powder alloy used for the SLM production and the determination of essential static and cyclic material properties. SLM specific design features and built-in functionality allow to simplify part assembly and to shortcut manufacturing steps. In addition, the post-SLM machining steps for engine ready parts will be described. As SLM is a novel manufacturing route, complementary quality tools are required to ensure part integrity. Powerful nondestructive methods, like 3D scanning and X-ray computer tomography have been used for that purpose. GE’s engine validation of SLM made parts in a heavy duty GT was done with selected hot gas path components in a rainbow arrangement including turbine blades with SLM tip caps. Although SLM has major differences to conventional manufacturing the various challenges from design to engine ready parts have been successfully mastered. This has been confirmed after the completion of the test campaign in 2015. All disassembled SLM components were found in excellent condition. Subsequent assessments of the SLM parts including metallurgical investigations have confirmed the good part condition.


Sign in / Sign up

Export Citation Format

Share Document