Lithography-Based Ceramic Manufacturing: A Novel Technique for Additive Manufacturing of High-Performance Ceramics

2014 ◽  
Vol 88 ◽  
pp. 60-64 ◽  
Author(s):  
Martin Schwentenwein ◽  
Peter Schneider ◽  
Johannes Homa

Albeit widely established in plastic and metal industry, additive manufacturing technologies are still a rare sight in the field of ceramic manufacturing. This is mainly due to the requirements for high performance ceramic parts, which no additive manufacturing process was able to meet to date.The Lithography-based Ceramic Manufacturing (LCM)-technology which enables the production of dense and precise ceramic parts by using a photocurable ceramic suspension that is hardened via a photolithographic process. This new technology not only provides very high accuracy, it also reaches high densities for the sintered parts. In the case of alumina a relative density of over 99.4 % and a 4-point-bending strength of almost 430 MPa were realized. Thus, the achievable properties are similar to conventional manufacturing methods, making the LCM-technology an interesting complement for the ceramic industry.

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Marina Garcia-Cardosa ◽  
Francisco-Javier Granados-Ortiz ◽  
Joaquín Ortega-Casanova

In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.


Author(s):  
Christ P. Paul ◽  
Arackal N. Jinoop ◽  
Saurav K. Nayak ◽  
Alini C. Paul

Additive manufacturing is one of the nine technologies fuelling the fourth industrial revolution (Industry 4.0). High power lasers augmented with allied digital technologies is changing the entire manufacturing scenario through metal additive manufacturing by providing feature-based design and manufacturing with the technology called laser additive manufacturing (LAM). It enables the fabrication of customized components having complex and lightweight designs with high performance in a short period. The chapter compiles the evolution and global status of LAM technology highlighting its advantages and freedoms for various industrial applications. It discusses how LAM is contributing to Industry 4.0 for the fabrication of customized engineering and prosthetic components through case studies. It compiles research, development, and deployment scenarios of this new technology in developing economies along with the future scope of the technology.


Author(s):  
Aamer Nazir ◽  
Jeng-Ywan Jeng

The primary concern of the Industry 4.0 is the direct digital manufacturing of customized products on demand at high production speed, high accuracy with functional material property. Although the unique capabilities of existing additive manufacturing technologies make it suitable for direct digital manufacturing, there are numerous limitations which include low printing speed, less accuracy and repeatability, and a limited selection of materials for a particular application. Therefore, a high-speed additive manufacturing approach is proposed in this paper, that is capable of achieving high speed of production, high accuracy, and surface finish, and functional material property. For better understanding, authors describe those additive manufacturing technologies that are capable of achieving the aforementioned characteristics. For validation, samples of various dimensions were 3D printed on a selective laser sintering and a high-speed multijet fusion 3D printer. The results were compared in the context of printing speed, surface roughness (Ra), and hardness of printed parts. Results revealed that the multijet fusion process is significantly faster than its counterpart while sacrificing Ra to some extent but the hardness of printed parts is not changed significantly. The selective laser sintering-printed samples had a 15% lower Ra compared with multijet fusion samples. The results also revealed that the multijet fusion process might be able to print composite/multi-materials; however, more research needs to be done.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 84
Author(s):  
Marcin Ziółkowski ◽  
Tomasz Dyl

3D printing conquers new branches of production due to becoming a more reliable and professional method of manufacturing. The benefits of additive manufacturing such as part optimization, weight reduction, and ease of prototyping were factors accelerating the popularity of 3D printing. Additive manufacturing has found its niches, inter alia, in automotive, aerospace and dentistry. Although further research in those branches is still required, in some specific applications, additive manufacturing (AM) can be beneficial. It has been proven that additively manufactured parts have the potential to out perform the conventionally manufactured parts due to their mechanical properties; however, they must be designed for specific 3D printing technology, taking into account its limitations. The maritime industry has a long-standing tradition and is based on old, reliable techniques; therefore it implements new solutions very carefully. Besides, shipbuilding has to face very high classification requirements that force the use of technologies that guarantee repeatability and high quality. This paper provides information about current R&D works in the field of implementing AM in shipbuilding, possible benefits, opportunities and threats of implementation.


Author(s):  
Benjamin Graybill ◽  
Ming Li ◽  
David Malawey ◽  
Chao Ma ◽  
Juan-Manuel Alvarado-Orozco ◽  
...  

Additive manufacturing enables the design of components with intricate geometries that can be manufactured with lead times much shorter when compared with conventional manufacturing. The ability to manufacture components out of high-performance metals through additive manufacturing technologies attracts industries that wish to develop more complex parts, but require components to maintain their structural integrity in demanding operating environments. Nickel-based superalloys are of particular interest due to their excellent mechanical, creep, wear, and oxidation properties at both ambient and elevated temperatures. However, relationship between process parameters and the resulting microstructure is still not well understood. The control of the microstructure, in particular the precipitation of secondary phases, is of critical importance to the performance of nickel-based superalloys. This paper reviews the additive manufacturing methods used to process nickel-based superalloys, the influence of the process parameters on microstructure and mechanical properties, the effectiveness of various heat treatment regimens, and the addition of particles in order to further improve mechanical properties.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


2020 ◽  
Vol 110 (01-02) ◽  
pp. 2-6
Author(s):  
Matthias Weigold ◽  
Timo Scherer ◽  
Eric Schmidt ◽  
Martin Schwentenwein ◽  
Thomas Prochaska

Die additive Fertigung von Schneidstoffen hat das Potenzial, leistungsfähigere Zerspanungswerkzeuge zu ermöglichen. Das Lithography-based Ceramic-Manufacturing-(LCM)-Verfahren erlaubt die Fertigung hochbelastbarer Bauteile aus Keramik. Dieser Beitrag stellt zum einen das LCM-Verfahren und zum anderen die Entwicklung additiv herstellbarer Wendeschneidplatten vor. Zuletzt erfolgt die Überprüfung der Funktionstauglichkeit von additiv hergestellten keramischen Wendeschneidplatten in Außenlängsdrehversuchen mit vermicularem Gusseisen (GJV-450).   The additive manufacturing of cutting materials has the potential to enable more efficient cutting tools. The Lithography-based Ceramic Manufacturing (LCM) process allows for the production of high-performance ceramic components. This article presents the LCM process as well as the development of indexable inserts that can be produced additively. Finally, the results of external longitudinal turning tests in Compacted Graphite Iron (CGI-450) are presented.


Sign in / Sign up

Export Citation Format

Share Document