High-performance eco-friendly trimming die manufacturing using heterogeneous material additive manufacturing technologies

Author(s):  
Myoung-Pyo Hong ◽  
Woo-Sung Kim ◽  
Ji-Hyun Sung ◽  
Dong-Hyuk Kim ◽  
Ki-Man Bae ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Marina Garcia-Cardosa ◽  
Francisco-Javier Granados-Ortiz ◽  
Joaquín Ortega-Casanova

In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.


Author(s):  
Benjamin Graybill ◽  
Ming Li ◽  
David Malawey ◽  
Chao Ma ◽  
Juan-Manuel Alvarado-Orozco ◽  
...  

Additive manufacturing enables the design of components with intricate geometries that can be manufactured with lead times much shorter when compared with conventional manufacturing. The ability to manufacture components out of high-performance metals through additive manufacturing technologies attracts industries that wish to develop more complex parts, but require components to maintain their structural integrity in demanding operating environments. Nickel-based superalloys are of particular interest due to their excellent mechanical, creep, wear, and oxidation properties at both ambient and elevated temperatures. However, relationship between process parameters and the resulting microstructure is still not well understood. The control of the microstructure, in particular the precipitation of secondary phases, is of critical importance to the performance of nickel-based superalloys. This paper reviews the additive manufacturing methods used to process nickel-based superalloys, the influence of the process parameters on microstructure and mechanical properties, the effectiveness of various heat treatment regimens, and the addition of particles in order to further improve mechanical properties.


2014 ◽  
Vol 88 ◽  
pp. 60-64 ◽  
Author(s):  
Martin Schwentenwein ◽  
Peter Schneider ◽  
Johannes Homa

Albeit widely established in plastic and metal industry, additive manufacturing technologies are still a rare sight in the field of ceramic manufacturing. This is mainly due to the requirements for high performance ceramic parts, which no additive manufacturing process was able to meet to date.The Lithography-based Ceramic Manufacturing (LCM)-technology which enables the production of dense and precise ceramic parts by using a photocurable ceramic suspension that is hardened via a photolithographic process. This new technology not only provides very high accuracy, it also reaches high densities for the sintered parts. In the case of alumina a relative density of over 99.4 % and a 4-point-bending strength of almost 430 MPa were realized. Thus, the achievable properties are similar to conventional manufacturing methods, making the LCM-technology an interesting complement for the ceramic industry.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


Author(s):  
Julius Schurb ◽  
Matthias Hoebel ◽  
Hartmut Haehnle ◽  
Harald Kissel ◽  
Laura Bogdanic ◽  
...  

Additive manufacturing and in particular Selective Laser Melting (SLM) are manufacturing technologies that can become a game changer for the production of future high performance hot gas path parts. SLM radically changes the design process giving unprecedented freedom of design and enabling a step change in part performance. Benefits are manifold, such as reduced cooling air consumption through more efficient cooling schemes, reduced emissions through better mixing in the combustion process and reduced cost through integrated part design. GE is already making use of SLM for its gas turbine components based on sound experience for new part production and reconditioning. The paper focuses on: a) Generic advantages of rapid manufacturing and design considerations for hot gas path parts b) Qualification of processes and additive manufacturing of engine ready parts c) SLM material considerations and properties validation d) Installation and validation in a heavy duty GT Additive Manufacturing (AM) of hot gas path components differs significantly from known process chains. All elements of this novel manufacturing route had to be established and validated. This starts with the selection of the powder alloy used for the SLM production and the determination of essential static and cyclic material properties. SLM specific design features and built-in functionality allow to simplify part assembly and to shortcut manufacturing steps. In addition, the post-SLM machining steps for engine ready parts will be described. As SLM is a novel manufacturing route, complementary quality tools are required to ensure part integrity. Powerful nondestructive methods, like 3D scanning and X-ray computer tomography have been used for that purpose. GE’s engine validation of SLM made parts in a heavy duty GT was done with selected hot gas path components in a rainbow arrangement including turbine blades with SLM tip caps. Although SLM has major differences to conventional manufacturing the various challenges from design to engine ready parts have been successfully mastered. This has been confirmed after the completion of the test campaign in 2015. All disassembled SLM components were found in excellent condition. Subsequent assessments of the SLM parts including metallurgical investigations have confirmed the good part condition.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1210 ◽  
Author(s):  
Myoung-Pyo Hong ◽  
Jin-Jae Kim ◽  
Woo-Sung Kim ◽  
Min-Kyu Lee ◽  
Ki-Man Bae ◽  
...  

Additive manufacturing (AM) has recently been receiving global attention. As an innovative alternative to existing manufacturing technologies, AM can produce three-dimensional objects from various materials. In the manufacturing industry, AM improves production cost, time, and quality in comparison to existing methods. In addition, AM is applied in the fabrication and production of objects in diverse fields. In particular, metal AM has been continuously commercialized in high value-added industries such as aerospace and health care by many research and development projects. However, the applicability of metal AM to the mold and die industry and other low value-added industries is limited because AM is not as economical as current manufacturing technologies. Therefore, this paper proposes an effective solution to the problem. This study examines a method for using direct energy deposition and heterogeneous materials, a heterogeneous material additive-manufacturing process for metals used to optimize the cooling channels and a key process in manufacturing hot-stamping dies. The improvements in the cooling performances and uniform cooling were evaluated by heat-flow analysis in a continuous process. Finally, trial products were fabricated using the proposed method, and a trial for hot stamping was conducted to examine the possibility of it being used in commercial applications.


Author(s):  
Lijue Xue ◽  
Yangsheng Li ◽  
Jianyin Chen ◽  
Shaodong Wang

Laser consolidation (LC) is a novel additive manufacturing process being developed by the National Research Council Canada (NRC) at its London facility. LC offers unique capabilities in the production of net-shape functional metallic parts requiring no further post-machining. NRC’s LC technology has achieved dimensional accuracy of up to +/−0.05 mm with a surface finish up to 1 μm Ra (depending on the materials used in the manufacturing process). The LC process differs from other additive manufacturing technologies by its high precision deposition system that can build functional parts or features on top of existing parts using various high performance materials and alloys. In this paper, laser consolidation of various high performance materials (such as Ni-base super alloys and Ti-6Al-4V alloy) will be discussed and the examples will be given on building complex functional components and repairing parts otherwise unrepairable for gas turbine and other applications.


2019 ◽  
Vol 89 (19-20) ◽  
pp. 4282-4294 ◽  
Author(s):  
DU Weerasinghe ◽  
Srimala Perera ◽  
DGK Dissanayake

With the increasing complexity of human lifestyles, the demand for functionalized or high-performance textile materials has seen a steep rise. However, the methods of producing thereof are still creating a negative impact on the environment. Although biomimicry is a possible means of catering for this demand, most of the emerging biomimetic technologies follow an unsustainable path, accentuated only on transferring functionalities of nature, by using chemical-intensive applications. Nevertheless, biomimicry holds promise in sustainable manufacturing, if toxic chemical usage can be reduced while structural applications are increased. This study reviews the possibilities of existing and futuristic textile technologies that could facilitate conscious biomimicking of functional textiles, rather than intense application of chemicals. A total of 283 research articles were initially obtained and screened to review the possibilities of combining biomimetic technologies with textile manufacturing technologies. Prospects of innovative textile technologies and additive manufacturing on the futuristic possibilities of structural mimicking of biological functionalities into textile materials are discussed comprehensively. Possible construction methods, including additive manufacturing and weaving in the micro/nano scale, are suggested for structural mimicking. It is also recommended to unfold the potential of biomimicry in producing functional textiles in order to alleviate the harmful impact already caused to the environment by the textile industry.


2020 ◽  
Vol 21 (6) ◽  
pp. 24-45 ◽  
Author(s):  
Cristiano Tomassoni ◽  
Oscar Antonio Peverini ◽  
Giuseppe Venanzoni ◽  
Giuseppe Addamo ◽  
Fabio Paonessa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document