scholarly journals Proteomics of Bronchoalveolar Lavage Fluid Reveals a Lung Oxidative Stress Response in Murine Herpesvirus-68 Infection

Author(s):  
Eric Bortz ◽  
Ting-Ting Wu ◽  
Parthive Patel ◽  
Julian P. Whitelegge ◽  
Ren Sun

Murine herpesvirus-68 (MHV-68) productively infects the mouse lungs, exhibiting a complex pathology characteristic of both acute viral infections and chronic respiratory diseases. We sought to discover proteins differentially expressed in bronchoalveolar lavage (BAL) from mice infected with MHV-68. Mice were infected intranasally with MHV-68. After 9 days, as the lytic phase of infection resolved, differential BAL proteins were identified by 2D electrophoresis and mass spectrometry. Of 23 unique proteins, acute phase proteins, vitamin A transport, and oxidative stress response factors Pdx6 and EC-SOD (Sod3) were enriched. Correspondingly, iNOS2 was induced in lung tissue by 7 days post infection. Oxidative stress was partly a direct result of MHV-68 infection, as reactive oxygen species (ROS) were induced in cultured murine NIH3T3 fibroblasts and human lung A549 cells infected with MHV-68. Finally, mice were infected with a recombinant MHV-68 co-expressing inflammatory cytokine murine interleukin 6 (IL6) showed exacerbated oxidative stress and soluble type I collagen characteristic of tissue recovery. Thus, oxidative stress appears to be a salient feature of MHV-68 pathogenesis, in part caused by lytic replication of virus and IL6. Proteins and small molecules in lung oxidative stress networks therefore may provide new therapeutic targets to ameliorate respiratory virus infections.

Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 670 ◽  
Author(s):  
Eric Bortz ◽  
Ting-Ting Wu ◽  
Parthive Patel ◽  
Julian Whitelegge ◽  
Ren Sun

Murine herpesvirus-68 (MHV-68) productively infects mouse lungs, exhibiting a complex pathology characteristic of both acute viral infections and chronic respiratory diseases. We sought to discover proteins differentially expressed in bronchoalveolar lavage (BAL) from mice infected with MHV-68. Mice were infected intranasally with MHV-68. After nine days, as the lytic phase of infection resolved, differential BAL proteins were identified by two-dimensional (2D) electrophoresis and mass spectrometry. Of 23 unique proteins, acute phase proteins, vitamin A transport, and oxidative stress response factors Pdx6 and EC-SOD (Sod3) were enriched. Correspondingly, iNOS2 was induced in lung tissue by seven days post-infection. Oxidative stress was partly a direct result of MHV-68 infection, as reactive oxygen species (ROS) were induced in cultured murine NIH3T3 fibroblasts and human lung A549 cells infected with MHV-68. Finally, mice infected with a recombinant MHV-68 co-expressing inflammatory cytokine murine interleukin 6 (IL6) showed exacerbated oxidative stress and soluble type I collagen characteristic of tissue recovery. Thus, oxidative stress appears to be a salient feature of MHV-68 pathogenesis, in part caused by lytic replication of the virus and IL6. Proteins and small molecules in lung oxidative stress networks therefore may provide new therapeutic targets to ameliorate respiratory virus infections.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242789
Author(s):  
Yoko Ito ◽  
Kana Oshinden ◽  
Naokata Kutsuzawa ◽  
Chinatsu Kohno ◽  
Sanae Isaki ◽  
...  

There has been an increase in the usage of heat-not-burn (HNB) cigarette products. However, their effects on alveolar epithelial cells (AECs) remain unknown. AECs are the target cells of conventional cigarette smoking-related respiratory diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and lung cancer whose pathogenesis involves oxidative stress. In this study, primary rat AECs were isolated, cultured and stimulated by HNB cigarette smoke extract (CSE). Our data indicate that rat AECs exposed to HNB CSE induced oxidative stress response genes (e.g. Hmox-1, Gsta1, Gsta3 and Nqo1). We also compared the oxidative stress response between two different types of AECs, alveolar type I-like (ATI-like) cells and type II (ATII) cells, and between two different types of cigarette, HNB cigarettes and conventional cigarettes. The expressions of Gsta1, Gsta3 and Nqo1 were higher in ATII cells than ATI-like cells in response to HNB and conventional cigarettes, but there was no significant difference in their expression levels between HNB cigarette and conventional cigarette. Taken together, our results suggest that HNB cigarettes have the similar potential as conventional cigarette products to induce oxidative stress response in AECs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1709 ◽  
Author(s):  
Maqusood Ahamed ◽  
Mohd Javed Akhtar ◽  
M. A. Majeed Khan ◽  
ZabnAllah M. Alaizeri ◽  
Hisham A. Alhadlaq

Graphene-based nanocomposites have attracted enormous interest in nanomedicine and environmental remediation, owing to their unique characteristics. The increased production and widespread application of these nanocomposites might raise concern about their adverse health effects. In this study, for the first time, we examine the cytotoxicity and oxidative stress response of a relatively new nanocomposite of cerium oxide-reduced graphene oxide (CeO2-RGO) in human lung epithelial (A549) cells. CeO2-RGO nanocomposites and RGO were prepared by a simple hydrothermal method and characterized by relevant analytical techniques. Cytotoxicity data have shown that RGO significantly induces toxicity in A549 cells, evident by cell viability reduction, membrane damage, cell cycle arrest, and mitochondrial membrane potential loss. However, CeO2-RGO nanocomposites did not cause statistically significant toxicity as compared to a control. We further observed that RGO significantly induces reactive oxygen species generation and reduces glutathione levels. However, CeO2-RGO nanocomposites did not induce oxidative stress in A549 cells. Interestingly, we observed that CeO2 nanoparticles (NPs) alone significantly increase glutathione (GSH) levels in A549 cells as compared to a control. The GSH replenishing potential of CeO2 nanoparticles could be one of the possible reasons for the biocompatible nature of CeO2-RGO nanocomposites. Our data warrant further and more advanced research to explore the biocompatibility/safety mechanisms of CeO2-RGO nanocomposites in different cell lines and animal models.


2021 ◽  
Vol 9 (6) ◽  
pp. 1116
Author(s):  
Laurens Maertens ◽  
Pauline Cherry ◽  
Françoise Tilquin ◽  
Rob Van Houdt ◽  
Jean-Yves Matroule

Bacteria encounter elevated copper (Cu) concentrations in multiple environments, varying from mining wastes to antimicrobial applications of copper. As the role of the environment in the bacterial response to Cu ion exposure remains elusive, we used a tagRNA-seq approach to elucidate the disparate responses of two morphotypes of Caulobacter crescentus NA1000 to moderate Cu stress in a complex rich (PYE) medium and a defined poor (M2G) medium. The transcriptome was more responsive in M2G, where we observed an extensive oxidative stress response and reconfiguration of the proteome, as well as the induction of metal resistance clusters. In PYE, little evidence was found for an oxidative stress response, but several transport systems were differentially expressed, and an increased need for histidine was apparent. These results show that the Cu stress response is strongly dependent on the cellular environment. In addition, induction of the extracytoplasmic function sigma factor SigF and its regulon was shared by the Cu stress responses in both media, and its central role was confirmed by the phenotypic screening of a sigF::Tn5 mutant. In both media, stalked cells were more responsive to Cu stress than swarmer cells, and a stronger basal expression of several cell protection systems was noted, indicating that the swarmer cell is inherently more Cu resistant. Our approach also allowed for detecting several new transcription start sites, putatively indicating small regulatory RNAs, and additional levels of Cu-responsive regulation.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 345
Author(s):  
Hidemasa Bono

Data accumulation in public databases has resulted in extensive use of meta-analysis, a statistical analysis that combines the results of multiple studies. Oxidative stress occurs when there is an imbalance between free radical activity and antioxidant activity, which can be studied in insects by transcriptome analysis. This study aimed to apply a meta-analysis approach to evaluate insect oxidative transcriptomes using publicly available data. We collected oxidative stress response-related RNA sequencing (RNA-seq) data for a wide variety of insect species, mainly from public gene expression databases, by manual curation. Only RNA-seq data of Drosophila melanogaster were found and were systematically analyzed using a newly developed RNA-seq analysis workflow for species without a reference genome sequence. The results were evaluated by two metric methods to construct a reference dataset for oxidative stress response studies. Many genes were found to be downregulated under oxidative stress and related to organ system process (GO:0003008) and adherens junction organization (GO:0034332) by gene enrichment analysis. A cross-species analysis was also performed. RNA-seq data of Caenorhabditis elegans were curated, since no RNA-seq data of insect species are currently available in public databases. This method, including the workflow developed, represents a powerful tool for deciphering conserved networks in oxidative stress response.


Sign in / Sign up

Export Citation Format

Share Document