scholarly journals The Earth's Gold: Where Did It Really Come From?

Author(s):  
Elizabeth P. Tito ◽  
Vadim I. Pavlov

Why is it that in the neighborhood of a calm ordinary star (the Sun) located at the quiet periphery of its galaxy (the Milky Way), non-native heavy elements are abundant in such concentrated form? Where did these elements really come from? Where did Earth's gold come from? Our analysis of the known data offers a fact-reconciling hypothesis: What if, in the early solar system, an explosive collision occurred -- of a traveling from afar giant-nuclear-drop-like object with a local massive dense object (perhaps a then-existent companion of the Sun) -- and the debris, through the multitude of reaction channels and nuclei transformations, was then responsible for (1) the enrichment of the solar system with the cocktail of all detected exogenous chemical elements, and (2) the eventual formation of the terrestrial planets that pre-collision did not exist, thus offering a possible explanation for their inner position and compositional differences within the predominantly hydrogen-helium rest of the solar system.

2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


Elements ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 231-236 ◽  
Author(s):  
Charles K. Shearer ◽  
Steven B. Simon

The behavior of boron during the early evolution of the Solar System provides the foundation for how boron reservoirs become established in terrestrial planets. The abundance of boron in the Sun is depleted relative to adjacent light elements, a result of thermal nuclear reactions that destroy boron atoms. Extant boron was primarily generated by spallation reactions. In the initial materials condensing from the solar nebula, boron was predominantly incorporated into plagioclase. Boron abundances in the terrestrial planets exhibit variability, as illustrated by B/Be. During planetary formation and differentiation, boron is redistributed by fluids at low temperature and during crystallization of magma oceans at high temperature.


Conditions that could have applied in the environments of the major planets when they were forming make it possible that the present icy mantles of the larger satellites were then oceans and vapour atmospheres encasing silicate—ferrous cores. The major constituents are explored by comparison with the present atmospheres of the terrestrial planets. It is further suggested that the primary condensations during the formation of the Solar System were the Sun and the major planets, and that the terrestrial planets and satellites were a secondary formation. Some observational data are offered in support of the arguments and future tests are suggested.


1974 ◽  
Vol 3 ◽  
pp. 475-481
Author(s):  
H. C. Urey

Objects of the solar system, in addition to the Sun, can be classified into four groups -the planets, objects of lunar mass, smaller objects of variable mass and the comets.If the solar proportion of gases relative to non-volatile compounds of the variety in the terrestrial planets, namely about 300 times the mass of these elements, were added to the terrestrial planets, they would have masses comparable to those of the major planets. Mercury is low in mass but has a high density, indicating that it has lost several times its mass of silicate materials relative to high density metallic iron. If this were restored and then the component of gases were added, it would also fall into the group rather naturally. Mars appears to be rather small. Uranus and Neptune have rather high densities indicating some loss of gases, probably hydrogen and helium. When we attempt to estimate the mass of primitive solar material from which the planets were evolved, we conclude that they evolved from very similar masses. Later, I shall argue that the process was a very inefficient one.


2019 ◽  
Vol 5 (9) ◽  
pp. eaaw3350 ◽  
Author(s):  
M.-C. Liu ◽  
J. Han ◽  
A. J. Brearley ◽  
A. T. Hertwig

Dust condensation and coagulation in the early solar system are the first steps toward forming the terrestrial planets, but the time scales of these processes remain poorly constrained. Through isotopic analysis of small Ca-Al–rich inclusions (CAIs) (30 to 100 μm in size) found in one of the most pristine chondrites, Allan Hills A77307 (CO3.0), for the short-lived 26Al-26Mg [t1/2 = 0.72 million years (Ma)] system, we have identified two main populations of samples characterized by well-defined 26Al/27Al = 5.40 (±0.13) × 10−5 and 4.89 (±0.10) × 10−5. The result of the first population suggests a 50,000-year time scale between the condensation of micrometer-sized dust and formation of inclusions tens of micrometers in size. The 100,000-year time gap calculated from the above two 26Al/27Al ratios could also represent the duration for the Sun being a class I source.


2004 ◽  
Vol 213 ◽  
pp. 45-50
Author(s):  
Hans Zinnecker

We discuss the difficulties of forming earth-like planets in metal-poor environments, such as those prevailing in the Galactic halo (Pop II), the Magellanic Clouds, and the early universe. We suggest that, with fewer heavy elements available, terrestrial planets will be smaller size and lower mass than in our solar system (solar metallicity). Such planets may not be able to sustain life as we know it. Therefore, the chances of very old lifeforms in the universe are slim, and a threshold metallicty (90% solar?) may exist for life to originate on large enough earth-like planets.


2018 ◽  
Vol 184 ◽  
pp. 01004
Author(s):  
Sergio Cristallo

Stars are marvellous caldrons where all the elements of the Universe (apartfrom hydrogen and helium) have been synthesized. The solar system chemical distri-butionis the result of many pollution episodes from already extinct stellar generations, occurred at different epochs before the Sun formation. Main nucleosynthesis channels re-sponsiblefor the formation of heavy elements are the rapid neutron capture process (ther-process) and the slow neutron capture process (the s-process). Hereafter, I will describethe theory of the s-process and the stellar sites where it is active.


In most discussions of the formation of the Solar System, the early Sun is assumed to have possessed the bulk of the angular momentum of the system, and a closely surrounding disc of gas was spun out, which, through magnetic coupling, acquired a progressively larger proportion of the total angular momentum. There are difficulties with this model in accounting for the inclined axis of the Sun, the magnitude of the magnetic coupling required, and the nucleogenetic variations recently observed in the Solar System. Another possibility exists, namely that of a slowly contracting disc of interstellar material, leading to the formation of both a central star and a protoplanetary disc. In this model one can better account for the tilt of the Sun’s axis and the lack of mixing necessary to account for the nucleogenetic evidence. The low angular momentum of the Sun and of other low mass stars is then seen as resulting from a slow build-up as a degenerate dwarf, acquiring orbital material at a low specific angular momentum. When the internal temperature reaches the threshold for hydrogen burning, the star expands to the Main Sequence and is now a slow rotator. More massive stars would spin quickly because they had to acquire orbiting material after the expansion, and therefore at a high specific angular momentum. A process of gradual inward spiralling may also allow materials derived from different sources to accumulate into solid bodies, and be placed on a great variety of orbits in the outer reaches of the system, setting up the cometary cloud of uneven nucleogenetic composition.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


Author(s):  
Elizabeth P. Tito ◽  
Vadim I. Pavlov

Most people are unaware that traditional models do not explain chemical composition of the solar system fully. The presence of such elements as certain p-nuclei or post-post-Fe-nuclei, remains not yet understood. We propose a mechanism which can explain appearance of all non-native elements in the solar system. The hypothesis involves an explosive &ldquo;collision&rdquo; of a traveling from afar giant-nuclear-drop-like object (with specific equation of state of its matter) within the inner part of the solar system. The &ldquo;nuclear fog&rdquo; and debris, through the multitude of reaction channels (capture and fission) and nuclei transformations, enriched the solar system and led to the eventual formation of the terrestrial planets that pre-collision did not exist. This offers a possible explanation for the planets&rsquo; inner position and compositional differences within the predominantly hydrogen-helium rest of the solar system.


Sign in / Sign up

Export Citation Format

Share Document