scholarly journals Overexpression of AhHDA1 Results in Retarded Growth of Hairy Roots and Altered Cell Metabolism in Arachis hypogaea

Author(s):  
Liangchen Su ◽  
Shuai Liu ◽  
Xing Liu ◽  
Baihong Zhang ◽  
Meijuan Li ◽  
...  

Peanut (Arachis hypogaea) is a crop plant with high economic value, but the epigenetic regulation of its growth and development has only rarely been studied. The peanut histone deacetylase 1 gene (AhHDA1) has been isolated and is known to be ABA- and drought-responsive. In this paper, we investigate the role of AhHDA1 in more detail, focussing on the effect of altered AhHDA1 expression in hairy roots at both the phenotypic and transcriptional levels. Agrobacterium rhizogenes-mediated transformation of A. hypogaea hairy roots was used to analyse how overexpression or RNA interference of AhHDA1 affects this tissue. In both types of transgenic hairy root, RNA sequencing was adopted to identify genes that were differentially expressed, and these genes were assigned to specific metabolic pathways. AhHDA1-overexpressing hairy roots were growth-retarded after 20 d in vitro cultivation, and superoxide anions and hydrogen peroxide accumulated to a greater extent than in control or RNAi groups. Overexpression of AhHDA1 is likely to accelerate flux through various secondary synthetic metabolic pathways in hairy roots, as well as reduce photosynthesis and oxidative phosphorylation. Genes encoding the critical enzymes caffeoyl-CoA O-methyltransferase (Araip.XGB85) and caffeic acid 3-O-methyltransferase (Araip.Z3XZX) in the phenylpropanoid biosynthesis pathway, chalcone synthase (Araip.B8TJ0) and polyketide reductase (Araip.MKZ27) in the flavonoid biosynthesis pathway, and hydroxyisoflavanone synthase (Araip.0P3RJ) and isoflavone 2'-hydroxylase (Araip.S5EJ7) in the isoflavonoid biosynthesis pathway were significantly upregulated by AhHDA1 overexpression, while their expression in AhHDA1-RNAi and control hairy roots remained at a lower level or was unchanged. Our results suggest that alteration of secondary metabolism activities is related to overexpression of AhHDA1, which is mainly reflected in phenylpropanoid, flavonoid and flavonoid biosynthesis. Future studies will focus on the function of AhHDA1 interacting proteins and their action on cell growth and stress responses.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10976
Author(s):  
Liangchen Su ◽  
Shuai Liu ◽  
Xing Liu ◽  
Baihong Zhang ◽  
Meijuan Li ◽  
...  

Background The peanut (Arachis hypogaea) is a crop plant of high economic importance, but the epigenetic regulation of its root growth and development has not received sufficient attention. Research on Arabidopsis thaliana has shown that histone deacetylases (HDACs) are involved in cell growth, cell differentiation, and stress response. Few studies have focused on the role of HDACs in the root development of other plants, particularly crop plants. In earlier studies, we found large accumulations of A. hypogaea histone deacetylase 1 (AhHDA1) mRNA in peanut roots. However, we did not explore the role of AhHDA1 in peanut root development. Methods In this paper, we investigated the role of the peanut AhHDA1 gene and focused on the effect of altered AhHDA1 expression in hairy roots at both the phenotypic and transcriptional levels. We analyzed the transformation of A. hypogaea hairy roots using Agrobacterium rhizogenes and RNA sequencing to identify differentially expressed genes that were assigned to specific metabolic pathways. Transgenic hairy roots were used as experimental material to analyze the downstream genes expression and histone acetylation levels. To thoroughly understand AhHDA1 function, we also simultaneously screened the AhHDA1-interacting proteins using a yeast two-hybrid system. Results AhHDA1-overexpressing hairy roots were growth-retarded after 20 d in vitro cultivation, and they had a greater accumulation of superoxide anions and hydrogen peroxide than the control and RNAi groups. AhHDA1 overexpression in hairy roots accelerated flux through various secondary synthetic metabolic pathways, as well as inhibited the primary metabolism process. AhHDA1 overexpression also caused a significant upregulation of genes encoding the critical enzyme chalcone synthase (Araip.B8TJ0, CHS) in the flavonoid biosynthesis pathway, hydroxyisoflavanone synthase (Araip.0P3RJ) in the isoflavonoid biosynthesis pathway, and caffeoyl-CoA O-methyltransferase (Aradu.M62BY, CCoAOMT) in the phenylpropanoid biosynthesis pathway. In contrast, ferredoxin 1 (Araip.327XS), the polypeptide of the oxygen-evolving complex of photosystem II (Araip.N6ZTJ), and ribulose bisphosphate carboxylase (Aradu.5IY98) in the photosynthetic pathway were significantly downregulated by AhHDA1 overexpression. The expression levels of these genes had a positive correlation with histone acetylation levels. Conclusion Our results revealed that the relationship between altered gene metabolism activities and AhHDA1 overexpression was mainly reflected in flavonoid, isoflavonoid, and phenylpropanoid metabolism. AhHDA1 overexpression retarded the growth of transgenic hairy roots and may be associated with cell metabolism status. Future studies should focus on the function of AhHDA1-interacting proteins and their effect on root development.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Adriana M. Gallego ◽  
Luisa F. Rojas ◽  
Wilmar G. Valencia ◽  
Lucía Atehortúa ◽  
Aura I. Urrea ◽  
...  

Abstract Background Theobroma cacao is a major source of flavonoids such as catechins and their monomers proanthocyanidins (PAs), widely studied for their potential benefits in cardiovascular diseases. Light has been shown to promote plant secondary metabolite production in vitro. In this study, cacao cells cultured in 7.5 L stirred tank photobioreactors (STPs) were exposed to a change of white to blue LED lights for 28 days (d). Results Transcriptomic analyses were performed in three time points comparing changing expression patterns, after cell exposure to white light (d0-VS-d14), after a shift from white to blue light (d14-VS-d15), and after an extended period of blue light for the following 15 days (d15-VS-d28). Under white light, there was enrichment in metabolic pathways associated with cell growth (carbon, glycolysis, and amino acid biosynthesis) accompanied by a significant increase in the PAs content. In the shift to blue light, further increase in PAs content was observed concomitantly with the significant expression of TWO-COMPONENT RESPONSE REGULATOR genes involved in the early stress responses via circadian clock and hormone pathways. Under blue light exposure, we observed a depletion of PAs content associated with ROS-mediated stress pathways. Conclusions Light effects on large-scale cell cultures in photobioreactors are complex and pleiotropic; however, we have been able to identify key regulatory players upstream cacao flavonoid biosynthesis in STPs, including TWO-COMPONENT SYSTEM and ROS-signaling genes. The crosstalk between flavonoid biosynthesis and regulatory networks led to understand the dynamics of flavonoid production and degradation in response to light-driven ROS signals. This can be used to optimize the time, and the yield of in vitro targeted metabolites in large-scale culture systems.


Pharmacia ◽  
2020 ◽  
Vol 67 (2) ◽  
pp. 95-99
Author(s):  
Pavlinka Popova ◽  
Yancho Zarev ◽  
Aleksandar Shkondrov ◽  
Ilina Krasteva ◽  
Iliana Ionkova

Establishment of in vitro cultures from Astragalus glycyphyllos, determination of biomass and analysis of total flavonoids, rutin and camelliaside A were performed. To increase flavonoid production various combinations of plant hormones and light/dark regimen were investigated. Suspension cultures with exogenous quercetin were evaluated for possible increase in flavonoid production. Shoots, calli and suspensions were successfully established. Rutin and camelliaside A were proved in highest amount in shoots. Calli, cultivated on modified G48 medium, with double amount of Ca2+ and Mg2+, achieved higher total flavonoid content (2.37 and 2.03 mg/g DW). Suspensions cultures, cultivated on modified G48 medium with 10, 20 and 30 mg/mL quercetin achieved higher total flavonoid content (0.09, 0.10 and 0.13 mg/mg DW). Biotransformation of quercetin to isoquercitrin was achieved. The highest concentration of isoquercitrin (56.73 ng/mg DW) was observed on suspensions cultures cultivated on modified G48 medium, with 20 mg/mL quercetin.


2020 ◽  
Author(s):  
Silpa Gampala ◽  
Fenil Shah ◽  
Xiaoyu Lu ◽  
Hye-ran Moon ◽  
George Sandusky ◽  
...  

Abstract Background: Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the DNA binding activity of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB . The conversion of these TFs from an oxidized to reduced state lead to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia.Methods: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The impact of knocking down Ref-1 under hypoxia was dramatic on the mitochondria and metabolic pathways. Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays and qRT-PCR. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo and compared to Devimistat, a drug that disrupts mitochondrial metabolism.Results: Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat.Conclusion: Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.


Sign in / Sign up

Export Citation Format

Share Document