scholarly journals A Novel Process Production of Calophyllum Inophyllum Biodiesel with Electromagnetic Induction

Author(s):  
Sri Kurniati ◽  
Sudjito Soeparman ◽  
Sudarminto Setyo Yuwono ◽  
Lukman Hakim ◽  
Sudirman Syam

A novel method proposed in the production of Calophyllum inophyllum biodiesel has been investigated experimentally. In this study, we report the results of biodiesel processing with electromagnetic induction technology. The method used is to compare the results of Calophyllum inophyllum biodiesel processing between conventional, microwave and electromagnetic induction. The degumming, transesterification, and esterification process of the 3 methods are measured by stopwatch to obtain time comparison data. Characteristics of viscosity, density, and Fatty Acid Metil Ester (FAME) were obtained from testing of a Gas Chromatography-mass Spectrometry (GCMS) at the Polytechnic Chemistry Laboratory of the State of Malang. The results show that the biodiesel produced by this method satisfies the biodiesel standards and their characteristics are better than the biodiesel produced by conventional and microwave methods. The electromagnetic induction method also offers a fast and easy route to produce biodiesel with the advantage of increasing the reaction rate and improving the separation process compared to other methods. This advanced technology has the potential to significantly increase biodiesel production with considerable potential to reduce production time and costs.

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 383 ◽  
Author(s):  
Sri Kurniati ◽  
Sudjito Soeparman ◽  
Sudarminto Setyo Yuwono ◽  
Lukman Hakim ◽  
Sudirman Syam

A novel method as proposed in the production of Calophyllum inophyllum biodiesel has been investigated experimentally. This study reports the results of biodiesel processing with electromagnetic induction technology. The applied method is aimed to compare the results of Calophyllum inophyllum biodiesel processing among conventional, microwave and electromagnetic induction. The degumming, transesterification, and esterification process of the 3 methods are measured by stopwatch to obtain time comparison data. Characteristics of viscosity, density, and fatty acid metil ester (FAME) are obtained from testing of a Gas Chromatography-mass Spectrometry (GCMS) at the Integrated Research and Testing Laboratory, Gadjah Mada University, Yogyakarta. The results present that the biodiesel produced by this method satisfies the biodiesel standards and their characteristics are better than the biodiesel produced by conventional and microwave methods. The electromagnetic induction method also offers a fast and easy route to produce biodiesel with the advantage of increasing the reaction rate and improving the separation process compared to other methods. This advanced technology has the potential to significantly increase biodiesel production with considerable potential to reduce production time and costs.


2012 ◽  
Vol 29 (9) ◽  
pp. 1096
Author(s):  
Jipeng FU ◽  
Xiuyun YANG ◽  
Shanshan ZHANG ◽  
Ying GAO ◽  
Xiuxia GAO ◽  
...  

2019 ◽  
Vol 17 (1) ◽  
pp. 1185-1197 ◽  
Author(s):  
Ansori Ansori ◽  
Sasmitha Ayu Wibowo ◽  
Heri Septya Kusuma ◽  
Donny Satria Bhuana ◽  
Mahfud Mahfud

AbstractFossil fuel is the main energy resource in Indonesia with oil as the dominant fuel (44.1% of primary energy consumption) in 2017. But fossil fuel is not environmentally friendly and non-renewable. Thus, there is a need for alternative renewable fuels such as biodiesel. Biodiesel from nyamplung (Calophyllum inophyllum L.) oil can provide a promising future as a renewable fuel resource. The used of CaO catalyst from eggshell waste is also profitable, and microwave radiation can help the biodiesel production process run more effectively. Optimization of parameters such as microwave power, catalyst concentration, and transesterification time was performed by using Box-Behnken design. Combinations between biodiesel production from nyamplung oil with CaO catalyst using microwave and treated with Box-Behnken design is considered a new and modern method with optimization of the parameters which affect the transesterification process. The result showed that at a microwave power of 325.24 W, a concentration of catalyst of 3.88%, and a transesterification time of 12.47 min can produce an optimal yield of biodiesel of 98.9079% with the reliability of 92.37%.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1026 ◽  
Author(s):  
Lihui Wang ◽  
Xinlong Liu ◽  
Yanjun Jiang ◽  
Peng Liu ◽  
Liya Zhou ◽  
...  

Enzymatic production of biodiesel had attracted much attention due to its high efficiency, mild conditions and environmental protection. However, the high cost of enzyme, poor solubility of methanol in oil and adsorption of glycerol onto the enzyme limited the popularization of the process. To address these problems, we developed a silica nanoflowers-stabilized Pickering emulsion as a biocatalysis platform with Candida antarctica lipase B (CALB) as model lipase for biodiesel production. Silica nanoflowers (SNFs) were synthesized in microemulsion and served as a carrier for CALB immobilization and then used as an emulsifier for constructing Pickering emulsion. The structure of SNFs and the biocatalytic Pickering emulsion (CALB@SNFs-PE) were characterized in detail. Experimental data about the methanolysis of waste oil to biodiesel was evaluated by response surface methodology. The highest experimental yield of 98.5 ± 0.5% was obtained under the optimized conditions: methanol/oil ratio of 2.63:1, a temperature of 45.97 °C, CALB@SNFs dosage of 33.24 mg and time of 8.11 h, which was closed to the predicted value (100.00%). Reusability test showed that CALB@SNFs-PE could retain 76.68% of its initial biodiesel yield after 15 cycles, which was better than that of free CALB and N435.


2015 ◽  
Vol 35 (01) ◽  
pp. 69 ◽  
Author(s):  
Zuhra Zuhra ◽  
Husni Husin ◽  
Fikri Hasfita ◽  
Wahyu Rinaldi

Biodiesel, as a potential substituted energy, has attracted a great attention in recent years, which can be produced from o3 renewable sources and provides complete combustion with less gaseous pollutant emission. Biodiesel is produced conventionally via transesterification of vegetable oils using homogeneous catalysts, e.g. KOH, NaOH, and HaSO4. The homogeneous catalytic process, however, provides some disadvantages, such as, a huge production of wastewater from washing process of catalyst residues and non-reusability of the catalysts. In order to circumvent most of the economical and environmental drawbacks of homogeneous process, heterogeneous catalysts, this can be easily separated from reaction mixture by filtration. These catalysts are less corrosive and more environment-friendly. The objective of this work was to develop the effectivity of using waste of cockle (Clinocardium nuttalli) shell as a heterogeneous base catalyst for the biodiesel production. The catalysts were prepared by simple calcination methods, at temperaturesof 600, 700, 900 oC, and without calcination. Calcined catalysts were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) technique. Transesterification process of Calophyllum inophyllum L.oil and o methanol were carried out under bath reactor over the cockle shellcatalysts to produce biodiesel. The XRD patterns depicted that CaCO3 was successfully converted into CaO. SEM recorded demonstrates that the particle catalyst become smaller after heating. The highest activity was found at calcined catalyst of 900 oC, with the yield of biodiesel reaching 87.4% during 3 hours. The solid catalyst from waste cockle shell was proven to be durable for the transesterification of edible oil.Keywords: Cockle shell, biodiesel, heterogeneouscatalyst, Calophyllum inophyllum L. oil, transesterification ABSTRAKBiodiesel, sebagai sumber energi potensial telah menarik perhatian dalam beberapa tahun terakhir, karena dapat diproduksi dari sumber terbaharukan dan menghasilkan polutan yang rendah. Secara konvensional, biodiesel diproduksi melalui transesterifikasi minyak nabati menggunakan katalis homogen, yaitu: KOH, NaOH, dan H2SO4. Proses katalitik homogen memiliki beberapa kekurangan, seperti: banyak mengeluarkan air buangan dari pencucian residu katalis dan tidak dapat digunakan kembali. Untuk mengatasi kekurangan penggunaan katalis homogen baik secara ekonomi maupun lingkungan ditempuh dengan mengembangkan katalis heterogen atau katalis padat, yang dapat dengan mudah dipisahkan dari campuran reaksi secara filtrasi. Katalis ini juga rendah korosi dan lebih ramah lingkungan. Tujuan dari penelitian ini adalah untuk mengetahui efektivitas penggunaan abu kulit kerang yang mengandung CaO (kalsium oksida) sebagai katalis heterogen terhadap rendemen biodiesel. Bahan baku untuk pembuatan biodiesel adalah minyak nyamplung. Katalis disiapkan dengan metode kalsinasi sederhana pada temperatur: 600, 700, 900 oC, dan tanpa kalsinasi. Setelah kalsinasi, katalis dikarakterisasi denganmetode X-ray Diffraction (XRD) dan Scanning Electron Microscopy (SEM). Reaksi transesterifikasi minyak nyamplung dengan metanol dilangsungkan di dalam reaktor berpengadukmenggunakan katalis padat dari kulit kerang. Dari pola XRD mengindikasikan bahwa CaCO3 terkonversi dari kulit kerang sempurna menjadi CaO ketika kulit kerang dikalsinasi pada suhu 900 oC. Hasil rekaman SEM diperoleh ukuran partikel katalis setelah dipijar menjadi kecil. Aktivitas katalis tertinggi diperoleh pada penggunaan abu kulit kerang yang dikalsinasi pada suhu 900 oC. Rendemenmetil ester tertinggi mencapai 87,4% setelah 3 jam reaksi. Katalis abu kulit kerang telah terbukti dapat digunakan untuk reaksi transesterifikasi minyak nabati menjadi biodiesel.Kata kunci: Kulit kerang, biodiesel, katalis heterogen, kalsium oksida, minyak nyamplung, transesterikasi


2018 ◽  
Vol 66 (4) ◽  
pp. 437-447 ◽  
Author(s):  
Marek Sokáč ◽  
Yvetta Velísková ◽  
Carlo Gualtieri

Abstract Analytical solutions describing the 1D substance transport in streams have many limitations and factors, which determine their accuracy. One of the very important factors is the presence of the transient storage (dead zones), that deform the concentration distribution of the transported substance. For better adaptation to such real conditions, a simple 1D approximation method is presented in this paper. The proposed approximate method is based on the asymmetric probability distribution (Gumbel’s distribution) and was verified on three streams in southern Slovakia. Tracer experiments on these streams confirmed the presence of dead zones to various extents, depending mainly on the vegetation extent in each stream. Statistical evaluation confirms that the proposed method approximates the measured concentrations significantly better than methods based upon the Gaussian distribution. The results achieved by this novel method are also comparable with the solution of the 1D advection-diffusion equation (ADE), whereas the proposed method is faster and easier to apply and thus suitable for iterative (inverse) tasks.


2017 ◽  
Vol 5 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Agus Aktawan ◽  
Zahrul Mufrodi

Triasetin is a bioaditif to increase the octane number of the gasoline. Triasetin was generated from the reaction between giserol and acetic acid. Glycerol is a byproduct of biodiesel production. Triasetin production can reduce glycerol which is actually a waste by converting it into bioaditif having higher value. The reaction can be accelerated by addition of catalysts either solid or liquid catalyst. The reaction in this study used a solid catalyst types Silica Alumina. The reaction takes place in the three-neck flask reactor which is equipped with heating unit, mixers, and tools to take samples at regular intervals. Variables used in this research is the variety of reaction time and the reaction temperature (70, 80, 90, 100, and 1100C). The concentration of triasetin obtained will be known through the analysis of Gas Chromatography - Mass Spectrometry (GC-MS). The results of the analysis of GC or GC-MS treated or counted so getting glycerol conversion and selectivity of triasetin. The highest glycerol conversion 8,45% occurs at a temperature of 700C the reaction time of 90 minutes with triasetin selectivity 100%.


Sign in / Sign up

Export Citation Format

Share Document