scholarly journals Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge

Author(s):  
Hongchuan Jiang ◽  
Xiaoyu Tian ◽  
Xinwu Deng ◽  
Xiaohui Zhao ◽  
Luying Zhang ◽  
...  

MEMThe PdNi film hydrogen sensors with Wheatstone bridge structure were designed and fabricated by the micro-electro-mechanical system (MEMS) technology. The integrated sensors consisted of four PdNi alloy film resistors. The interval two of them were shielded with silicon nitride film and used as reference resistance, while the others were used for hydrogen sensing. The PdNi alloy films and SiN films were deposited by magnetron sputtering. The morphology and microstructure of the PdNi films were characterized with X-ray diffraction (XRD). The output resistance signal was converted to millivolt output voltage signal for easy data acquisition. Hydrogen (H2) sensing properties of PdNi film hydrogen sensor with Wheatstone bridge structure was investigated under different temperatures (30℃, 50℃ and 70℃) and H2 concentrations (from 10 ppm to 0.4%). The hydrogen sensor demonstrated good response at different hydrogen concentrations and high repeatability in cycle testing under 0.4% H2 concentration. Under 10ppm hydrogen, the PdNi film hydrogen sensor had evident and collectable output voltage of 600 μV.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1096 ◽  
Author(s):  
Hongchuan Jiang ◽  
Xiaoyu Tian ◽  
Xinwu Deng ◽  
Xiaohui Zhao ◽  
Luying Zhang ◽  
...  

The PdNi film hydrogen sensors with Wheatstone bridge structure were designed and fabricated with the micro-electro-mechanical system (MEMS) technology. The integrated sensors consisted of four PdNi alloy film resistors. The internal two were shielded with silicon nitride film and used as reference resistors, while the others were used for hydrogen sensing. The PdNi alloy films and SiN films were deposited by magnetron sputtering. The morphology and microstructure of the PdNi films were characterized with X-ray diffraction (XRD). For efficient data acquisition, the output signal was converted from resistance to voltage. Hydrogen (H2) sensing properties of PdNi film hydrogen sensors with Wheatstone bridge structure were investigated under different temperatures (30 °C, 50 °C and 70 °C) and H2 concentrations (from 10 ppm to 0.4%). The hydrogen sensor demonstrated distinct response at different hydrogen concentrations and high repeatability in cycle testing under 0.4% H2 concentration. Towards 10 ppm hydrogen, the PdNi film hydrogen sensor had evident and collectable output voltage of 600 μV.


1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


2013 ◽  
Vol 313-314 ◽  
pp. 666-670 ◽  
Author(s):  
K.J. Suja ◽  
Bhanu Pratap Chaudhary ◽  
Rama Komaragiri

MEMS (Micro Electro Mechanical System) are usually defined as highly miniaturized devices combining both electrical and mechanical components that are fabricated using integrated circuit batch processing techniques. Pressure sensors are usually manufactured using square or circular diaphragms of constant thickness in the order of few microns. In this work, a comparison between circular diaphragm and square diaphragm indicates that square diaphragm has better perspectives. A new method for designing diaphragm of the Piezoresistive pressure sensor for linearity over a wide pressure range (approximately double) is designed, simulated and compared with existing single diaphragm design with respect to diaphragm deflection and sensor output voltage.


2013 ◽  
Vol 438-439 ◽  
pp. 539-542
Author(s):  
Tao Li ◽  
Guo Jing Ren ◽  
Li Feng Qi ◽  
Zhi Min Liu

The relative discussion and research of Micro-Electro-Mechanical System (MEMS) and pressure sensor is carried out in this paper. The working principle of pressure sensor is analyzed, and the cantilever piezoresistive pressure sensor is studied in details. The electricity design of pressure sensor is researched. The open loop Wheatstone-bridge design is adopted in this paper, which adds the freedom of disposing circuit.


Sign in / Sign up

Export Citation Format

Share Document